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SIGNIFICANCE AND EXPLANATION / ,.

We investigate-,the so-called Hartree-Fock theory arisin in th tdyoI

arisng i th stuy o

*the structure of nucii. The Hartree-Fock theory is an approximation methodJ.

of many-body problems modelling the interaction of nucleons (neutrons and

protons), which lead to nonlinear variational systems of elliptic equations

(the Hartree-Fock equations). One of the main features of these problems is

the translation invariance which creates compactness difficulties which are

overcome by the use of the concentration-compactness method. ~ *
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WARTREE-FOCK THEORY IN NUCLEAR PHYSICS

D. Gogny and P. L. Lions**

1. Introduction

This paper is devoted to a general presentation of Hartree-Fock equations and related

questions, and we will be mainly interested in the application of Rartree-Fock method to

Nuclear Physics.

As it is well-known, the Rartree-Pock method was introduced by D. Rartree (23], V.

Pock [17] and J. C. Slater [45] to approximate the ground state (and its energy) of general

N-body problems in Quantum Physics. And the main application of this method was, in Atomic

Physics, the study of Coulomb systems (atoms and molecules) with the purely Coulomb

Hamiltonian of electrons interacting with static nucleii.

In Nuclear Physics, the use of Hartree-Fock methods to compute the ground state of

nucleii is quite recent (see for example the review papers by H. Bethe [7], J. W. Negele

[411, [42], P. Quentin and H. Plocard [44] and the references therein); among other

reasons, this delay was due to the lack of understanding of strong interaction and thus to

the difficulty of deriving realistic Hamiltonians to describe the interaction of nucleons -. -

(neutrons and protons). Let us imediately emphasize several important differences between

the N-body Hamiltonians arising in Atomic and Nuclear Physics:

i) translation invariance of the center of mass in Nuclear Physics (and no I-Body terms)

ii) very different 2-Body potentials (in Nuclear Physics the potentials have very short

range)

iii) large numbers of particles (nucleons).

Service P.T.N., Centre d'Etudes de Bruyhres-Le-Chitel, D.P. n0 12, 91680 Hruy~res-

Le-Chbtel Cedex.
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We will come back on these differences and we will mention others such as the use of
I

phenomenological density-dependent forces.

From the the mathematical viewpoint, these differences lead to equations (Hartree-Fock

equations, HF in short) of a completely different nature. And we do not know of any

reference in the mathematical (or mathematic physics) literature dealing with HF equations

in Nuclear Physics, while there are many references for HF equations (or at least Hartree

equations) in Atomic Physics (see for example E. H. Lieb and B. Simon [30], E. H. Lieb

[291, P. L. Lions [32] and the references therein).

Our goal here is to present to mathematicians the basics of Hartree-Fock method

(section II below) together with the known mathematical results on HF equations in the

context of Nuclear Physics. As we will see, many problems remain by large open and we

present sometimes model simplified problems which, hopefully, should preserve the same

features than the exact HF systems of equations.

We first describe the HF method (section II) which approximates a linear problem with

a single unknown function in large dimensions by a nonlinear one in 3 dimensions with a

large number of unknown functions (the computational advantage being obvious). If one is

interested in the ground state of a nucleus, the resulting problem by HF method is roughly

speaking a semilinear vector valued minimization problem with constraints on R3 which is

translation invariant. This is typical of problems which can be analyzed by the so-called

concentration-compactness method (cf. P. L. Lions [33], [34]). We explain in sections

III - V the existence results we can obtain, adopting a layered presentation to cover more

and more realistic problems (from the physics viewpoint). However, we do not consider in

these sections the possibility of spin-dependence and spin-orbit forces until section VI.

In section VII we go back to the original Hamiltonians and we discuss the various

approximations including Thomas-Fermi classical approximation. Section VIII is devoted to

the search of solutions of MF equations with symmetries while section IX is a very small

contribution to the understanlinq of symmetry hreakings of the nucleus. In section X, we

describe the external field method which is an important tool for the numeric-l computation

of the ground state.
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Section XI is devoted to various considerations on time-dependent Hartree-Fock (TDHF

in short) equations such as the orbital stability of the minima of HF problems and the

study of other periodic solutions. From the mathematical viewpoint TDHF equations are

systems of semilinear Schr8dinger equations.

Finally, the last section (XII) concerns another approximation (somewhat related to I
the HF method) known as the Hartree-Fock-Bobolyubov method (HFB in short) and we refer to

J. Decharg6 and D. Gogny [143, J. G. Valatin (471 for the Physics background of this .

method. mm
There are important questions related to HF equations that we will not consider here

namely the question of numerical analysis of HP equations, the RPA system and questions

related to WKB approximations when 'A goes to 0. We hope to come back on these questions

in future publications.

Let us finally mention that we will not assume any knowledge of Quantum Physics from .

the reader, but that we will try as much as possible to keep present the Physics

motivations. The authors would like to thank M. R. Dautray for bringing HF theory in

Nuclear Physics to the attention of the second author, and for stimulating their

interdisciplinary colloboration.
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II. Presentation of Hartree-Fock method

The basic object we consider is a A-body Hamiltonian that we denote by H, where A

is a positive integer: in Nuclear Physics, A = N+Z with N number of neutrons and Z

number of protons. The precise quantum system of A interacting nucleons is supposed to

be described by the Hamiltonian H

h2 A
--- a + I V(xi-xj

o i<j

where V is a given potential (function on 10), 'h is the Planck constant, m is the -

mass of the nucleon (we neglect here as usual the little differences of mass between

neutrons and protons) so I- may be thought of as a given positive constant. The points
2m

x.(1<i4A) are generic points of S3 and the notation Ai means the Laplacian with

respect to the group xi of variables.

The Hamiltonian H is, at least formally, a self-adjoint operator acting on the -.

closed subspace of L2 ((R3 )A) consisting of antisymmetric functions * of x .

C,.:.:..
(x1, .... XA) (m3A i.e.

(2) O(x (a1M), ,xo(A)) 1-1)IOI4(x I,.,xA)

for all xi f R (14i4A) and for all permutations a of {1,...,A) where lol denotes

the signature of o. We denote by H this subspace. This important constraint (2)

corresponds to the fundamental Pauli principle and is due to the fact that nucleons are

fermions.

Before going further in the description of MF method, let us point out that, for

physically correct Hamiltonians H, * should depend on spin and H should incorporate

spin-orbit terms and density-dependent 3-body terms. We deliberately ignore those terms in

this section to keep the ideas clear even if in next section the density-dependent term is

incorporated. Finally, we made no distinction between nucleons.

Of course, the interaction is mainly described by the choice of the potential V: let

us mention some typical examples in Nuclear Physics ,"
13) V(X) = me-ulxI2 + 5  x 2, "'B U 2"" 4(3-~) - S e- ' x l 1,8 1 R, U, > 0.. .,

or

.*--°-'
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(4) V(x) - ae XIx(l/Ix) + 0eh'"Ix(/I XI), 1,8 C R, U,,V > 0

or

- BA6 0 , R, B > 0 1 .. -1

hll these choices (and there are many others) respect the fundamental character of strong b.. .-.

interaction: short range and intense at short distances. Notice that V is spherically r

symmetric and this is also a general feature of the potentials V used in Nuclear Physics.

Observe also that H, R are invariant by translation of the center of mass *-....]

xi i.e.
i-I ....

(6) if 9 C H, rh0-0(xi+h, x2+h,. ... x+h) e H for all h e R 3

( 7 h ( H O -" M ( h ]' " .0): : : ?

Of course, one wants to know the spectrum of H and its eigenfunctions. In

particular, a fundamental role is played by the bottom of the spectrum which is obviously

given by

(B) K- Inf{(II,)2 / 9 e H, f lIIdx 1 ).

This is the so-called ground state energy. We will write sometimes EA to recall the

dependence on the number A. Of course, the above notation is formal since (HO,0) 2 is

not defined in general on H but on a subspace which description depends on V: we will

ignore those technicalities in this section. Let us finally mention that any minimum of

(8) is called a ground state (in fact, we have made here so many simplifications that one

can prove there exists no minimum of (8) because of the translation invariance - see

section VII).

In Nuclear Physics, one has to deal with nucleii for which the number X of nucleons

is large (up to 240) and this is why the direct computation of (8) is hopeless. Some

approximation is needed. The original idea of D. Hartree [ ] was to consider more
A

functions 9 (i.e. test functions 4) of the form: *(x 1 ,...,xA) - i, Pj(xj). But
i= 1" " 1

clearly this choice contradicts the antisymmetry requirement (2). Thi3 led V. Focx [17]

and J. C. Slater [45] to a better choice of 0 namely EP

-5- ?--.
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A

(9) *(x k....x1 ) ,d" Yj(xj) - detii-xj))

where 91 ....y,9 are A functions on R 3  
and the sum is over all permutations of

{1,...,A). Such a choice of * is called a Slater determinant.

Next, to check the normalization constraint of 0 in (8), we see that it is enough to

impose

(10) fR3 PIP;dx-6Il for I1 (A .j 4

Indeed, we then have II,' *
2dx. 1 1xl)dx

R-A Al -1 R3 9 O(i )4)9(i)(xi d i
a aO' i U..

o,0' i . ''

A'a-a, ;:

Therefore, the HF approximation consists in replacing E in (8) by

(11) EHF - Inf{(HOO) 2 / * - det(Yi(xj)), f 3 90 - j

observe that we have of course

(12) E 4 EHF. _

Next, it is possible to rewrite (0t,0) 2 quite simply when 0 is given by a Slater

determinant. Indeed, we have for all i < J ''l

(x~w,,(- •

f3A i A 1 7 3 P (k) (Xk )P: (k) (xk dxk)
R a, ' kyi R

1 rIII')*f (Vq (x ) V (x ))dx
• ~ ~ T 6.goi fX~ (7v(i ((x)i,.} VT:"'-""" ))

Al~ U oi+oI O(k)a'(k) R3 0r(i) i a'(i) i i

AL3- I v ) (x)I 2dx -

Al - 1 3 0(i') -
OR

- 6 - " - 4 .,
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while d%

V x _x (-41 2d n f( I - ( ) d k)- ,

a,a' ki3i,j ( (k)

3 3VXjIxi-.i) O() xi)9 Cxa ( ' i), ai, (j) (x )dx d. .

R 3xR
3

A," f 3 Ta(i)(x) 2(x- )l (x-y O) (y)12 II

R3XR

S f o(i) x), ( )V(x-Y), Y) 4 (y dxdy
R o R G (j) ai) oCi)

And we obtain the following expressions

(13) E = Inf{E(,,...,,) / i L R3 ), f (P i 6 for 1 ' i, j 4 A)
HP ln{( A q R3 i i

w ith2(14) E[l r.... '] P 1 2 dx +

i 
x )

1 2 

,'-. 

(x y I4.()1
3 i

-I f I (x) (x) x-Y) 4p (y) j, ( y) dxdyI 
-

i~ 3 3

R3xR
3  , ' -

or equivalently
,2 

A r 
I ' 

i 
a

(15) E '... ,A] A 3 
2  

f f J i~x)2V(x-Y)Ijy) 2dxdy +

.1 R ij RR
3 
XR

3

S f f T(x)o (x) V(x-Y)i(y).(y)dxdy

the second term is often called the direct term while the third one is called the exchange

term. We will also often denote by T(x) the density of kinetic energy T I AIVi(x)1
2

-
A i-1

P(x) the density P = i(x)! and P(x,y) the density matrix p(x,y)
A i=I
. (lx)v (y). Observe that we may simply write F as

* . . . . . . .. . . ... ..,



E 14P r dX + . rfP(x)V(x-y)p~y)dxdy +
~~R RR

1 f f V(Xy)l0(x,y)12dd .

3 3

The HF minimization problem (13) ia nonlinear, nonconvex in general, with constraints

and is invariant by translations (translating at the same time all Ti) rotations in

R3and by unitary transforms of (91 .... "A) in CA~. In fact, in the examples given in

next sections, the HF minimization problems will be slightly different (but still with the

same general features): an additional nonlinear term will be included in E corresponding

toadensity-dependent nonlinear 3-body term in H. We will come back on the realistic

H being used in Nuclear Physics in section VII while we analyze in section IV - V HF

problems like (13) deduced from various examples of these realistic Hamiltonians by the

method described above.

The Euler-Lagrange equations corresponding to the minimization problem (13) may be

written as

Air + (PVTiT(Y)! V(x-y) + *V(y-x)]p (x y) dy

- ei~ in R

for some hermitian matrix (eij) of Lagrange multipliers. Now, observe that if U is

unitary and diagonalizes (ejj) then (Ti ... T~2  is still a minimum if

(T..'O minimizes (13). And (T 1 *'A now solves

AT) + (0*V)vi KT1 = . eT i n R3

for some constant ei, Where K is the operator defined by

Kq(x) =f T ~(y)([- V(x-y) + .-. V(y-x)]0(x,y)dy

In particular, the constants el,...,eA are eigenvalues of the operator



'o .'o '.- ,-' .- - C *. , -" '. L' - *' .- .. . - ', - : .* * , , -r r,- . . , . _,* L , ,

7A2
72 A + (P0V) - K). The system of equations (16) is called HF equations. We also remark

that el,..'eA are sigenvalues of the above operator H = + (p*V) K.

Notice also that, at least in all examples considered below, these eigenvalues el,...,e A  . -o-

are non positive.

We conclude this section by a brief discussion of the validity of HF method: notice

that it is an approximation of the "true" problem (8) and that, a priori, it gives only a

bound from above of the ground state energy E (recall (12)). On the other hand, there

are various reasons to use it and thus study it: first of all, it gives good numerical

results and there are almost no substitutes to compute the ground state on E. A more

"scientific" reason is its asymptotic validity as A + +m (for general V) as proved by

E. H. Lieb and B. Simon [30], [31]: we will come back on this point in section VII.

-9-
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III- A model case

To give an idea of the type of HF problems which are encountered in Nuclear Physics,

we will consider in this section a very simplified problem: we build a scalar problem 6

(A = 1) with Skyrme's interaction as in D. Vautherin and D. M. Brink [481 skipping the

spin dependence. In the next section, we will consider the general case of B problems

with Skyrme's interaction but without spin dependence. The functional (16) becomes in this
case Im R 31v, 4 R 3 1.1 dx + f R 31,p dx +

(18) """"

+ f 1 12 1 1 2d. + f I V II"21d.

where Ct, 8,Y, 6 are constants such that: a > 0, > 0, Y > 0, Y + 8 > 0. This -"

functional corresponds (essentially) to a potential V of the form (5) with the additional
whren,5 y .6.r.osanssc.ht:-.0 0 ,Y+ .Ti

term .f

Then the HF minimization problem becomes

(19) I " Inf {E() / x, f3l1 2dx - 1"

where the minimizing class X is defined by

X = E H.(R3)( ), f 3 op1V9,dx < " "
R

Before stating our main existence result, let us recall that a minimizing sequence (9
n

is a sequence (On) in X satisfying

R319nI 1 E(Vn) A I

We have the

Theorem III.1: For every minimizing sequence (Fn)n of the minimization problem (19) one

can find Yn in R3  such that the new minimizing sequence n(.+yn ) is relatively hi
compact in H1(33) if and only if I < 0. in particular, if I < 0 there exists a

(*) H(3 3 ) =, L2 (RI), L2( 3)1

-10-
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minimum of (19). In addition, I < 0 if and only if a > *0 where a. is a positive

constant depending on V-1 B, y, 6, which goes to 0 as Tr- goes to 0. If a ( 0

there are minimizing sequences converging to 0 in LP( 3 ) for 2 < p ( -. Finally if P.-e

a < Q there is no minimum of (19).

Remarks: i) Further properties of minima of (19) are given below.

ii) Scalar problems like (19) have already been studied by several authors, we will only

mention the works by W. Strauss [46], C. V. Coffman 113), H. Derestycki. and P. L. Lions

(5], P. L. Lions (40]. The methods in these works yield only the existence of a minimum

if I < 0, using a symmetrization argument which is outlined in the proof of Proposition

111.2 below and which no longer applies to more realistic problems such as the ones studied

in the following sections.

iii) In fact it is possible to treat the case 'h 0: in that case every minimizing

sequence in the class C L 2 (R3 ), (Re V)
2 . (Im 0)2 e .1(23); r 3f ,I21V12dx < ) is '--

relatively compact say in TL2 up to a translation and there exists a minimum which is the

limit of the minima of (19) as 'A + 0. D

Before proving Theorem 111.1, we prove the

Proposition 111.2: Assume that I < 0. Then there exists a minimum of (19) which is

spherically symmetric, positive and decreasing with respect to r - XIl. J6

Proof: In view of Theorem 111.1, there exists a minimum 9 of (19). Then considering the -a-

spherical nonincreasing rearrangement of {Iv, one checks easily that E is decreased and

thus a minimum with the above properties is found. a

We now turn to the

Proof of Theorem I11.1: We are going to apply the concentration-compactness arguments (cf.

P. L. Lions [331). Hence we introduce

(20) IX - Inf{E(,) / 9 C x, 31,1
2 dx - X-

3

where k > 0. Then, applvinq the arguments of (331, we deduce that any minimizing sequence

of (19) is relatively compact up to a translation if and only if I the following

condition holds
(S.I) 11 <  I + II. , a CG (0,10,)...

-11- 
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P.. V.

We will not redo the proof in (33] but we will only make a few formal observations in

order to explain the role of (S.1). The main difficulty in the above statement is the "if*

part: in (33], it was proved that if a minimizing sequence is not relatively compact up to

a translation then roughly speaking it breaks at least into two parts which are essentially

supported in two disjoint closed sets whose distance goes to -. Let us denote those two

parts by 19 2 so 91 + P 2 1 we may assume that 3' () 2dx + a,
no 'n n- n n1  R n

(9 ) dx + 1-a. The above dichotomy then yields

1 2
I - lim EDP ] ) lim E( ] + lim ES[ ] I + I

n n - n a 1-an n n

and if (S.1) holds this is not possible.

The arguments of [33] apply: the only modification consists in checking that if Vn

is bounded in H1 (R3 ), f 2,I2 1, 12dx 4 c (indep. of n) and q converges weakly

in HI to some 9 then

lim . ' 1 2 1 1 2ndx + 6 f IVlP 22dx )
n 4R R *

3f d_ +L f I, 121dx-
R R

The proof of this claim is a simple consequence of Lenna 111.3 which is stated and proved

after the proof of Theorem I11.1.

We next show that (S.1) is equivalent to I 4 0 and that one has always I X 0"

indeed, let T c V(23 ) such that f Vy2dx = X and let 9(x) - U-3/29(x) for a > 0.
R

Obviously

EL9 [] = - v'~xl " 3191d" +
1 h 2  1 iq(ad

B1 -~ fR i ;l 'P139 191 *I 119 d.)

and thus letting a + +-, we prove that I ( 0. Hext, by a similar scaling argument we

1see that forfall 3>1, A

.- . .

... ... .... . ... ..

• _.._., ..... *.'...- .*.'... . . . ..-. ,..... ... '.-' .,,.oo,. .. ..... . ............... ... ,-
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N
Ni

1/ h2 fu 174 12114dx %l""

- Inf{e1/ 3 ( f3 Iv!dxj + e- f 3 ,dx + ! f d *x +eGx R l 3 4 31, S Y S4 R 6 = 1 l i =.

1/3 1 I.121 "VyI2dx + L IV1 212dxl/,X, f 1,1 2+ (e 4 f 3 16 R3' f 3II s.b

Now we claim that if 1A < 0 the infimum in IX may be restricted to those W satisfying 1%

A(V) - 4/2 o,1 + z f 3 l,121V, + . f 31Vl91212dx ) v for some v > 0. Indeed if
2m f 16R3

there were a minimizing sequence of Ix  that A( ) * 0, then by Sobolev embeddingsnn

9 + 0 in LP( 3 ) for 2 < p 4 6 (in fact p 4 12 here) and so f'n 14 dx + 0. But this
n nn

means that ) 0 and our claim is proved. Hence, we deduce

ex < e Inf{E[,1/, C X, A(,) ) v, f 3 1, 2 dx - A} - "-"
R

and this inequality holds if IA < 0. Then, a straightforward argument proves that (S.1)

is equivalent to I ( 0.

Observe also that the above scaling argument shows that if I = 0, there is a

minimizing sequence (namely 9. as a + +-) which converges to 0 in LP  for 2 < p 4 -.

We next discuss the inequality I < 0. It is obvious that I < 0 for a large

enough. So let us denote by 0 = a0(- 6, y, 6) the least positive constant such that

I < 0 for S > do (observe that I is nonincreasing with respect to a). We have to

prove that a0 > 0 or in other words that I - 0 for a small enough. But using Sobolev

2
and Holder inequalities we find for q c X, f 31P - I 1

R

E[fl] > c o  f w3I=) - 1/ I5) 2 + P(f 1,16dx)
0 m 34~ 3Iq x 6 R3

h2 t1/3 a 1/2 6
A simple study of the function of one real variable C0 M t - t + t proves

that 1- 0 for a small enough.

The fact that dO  goes to 0 as -+ 0 can be seen from the expression of E[ o ]

given above.

Pinally let a < mo' if there exists a minimum of I for a we can test the

-13-
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minimization problem (19) for a (a ( a 0with this minimum and this gives a negative

value for I contradicting the defi'iiti-n -' coa. a

Lemma 111.3: Let fn ) 0 converge in LIto eome f )p 0, let gn converge weakly in

L2  to some q and assume that for IgnI2  ie bounded in L Then fjgj2 C L' and vs

have

lim f f_ n g n2 f f1g12
n

Proof: Let M, R C (0,ft). We introduce a symmetric convex function OR satisfying

*0 (C *R(z) 4 Ii j2, %~(z) I zI 2  for IzI 4 R, Ris Lipschitz. it is clearly enough to

* prove that we have

n (f-(M)

*In order to do so we first observe that, without loss of generality, we ay assume that

2
Y~gn) converges weakly in L to some h which satisfies h ~ (q).

Next, we remark that we can conclude if we prove that

(M) *

*But this integral is easily bounded for all 6 > 0 by

f j *R(g) + N J(f-f n )*R' 9 n)

nn

+6 +(,R Cj 5
R)6gf

and~~~~ wemycocue

.7

-14-



IV. Skyrae's interaction without spin

In all this section 
we will consider only 

the so-called Skyrm's 
interaction 

Ie *1

thus following the approach by 0. Vautherin 
and D. K. trink [48]. To simplify the 6 r

presentation we skip the spin dependence and we refer to section VI for the eoeplete 1 7
problems.• 

'

We begin this section by a special case which corresponds to the simplified situation

where no differences are made between neutrons and protons (N,-Z, no Coulomb interaction

between protons). In fact, even if isospin if "fixed" for neutrons and protons at the

level of the original A-body problem, one can allow in the Slater determinant wave- -

functions which depend on the isospin and then one is also led to problems of the following 
Mal.

form. In those cases the functional (16) becomes 
.- ,

(21)1

kA

A A
where T- 7p 12, - ".,i2 . The constants , 0, ye 6 satisfy

i- i-i 1,,1 
; ..

(22) a > 0, 0 > 0, 6 > 0, O+Y > 0 • .-

hs in the preceding section, only the last term f f p3dx is not an obvious consequence

of the Mr method as described in section 11: indeed this term (and analogous terms in this

section and in the next one) comes from a 3-body term which is equivalent to a 2-body

density dependent term in the amiltonian H. We will come back on this point in Section 
*': ,

VII.

The HP minimization problem may then be written as

1 3
I =Inf(Ef!,, ....A / H (R ),f rrdx < .

(23)

133 ' e; dx 8i for I , A)

Before stating our main result on (23), we need to introduce a few notations: let

N - (m1 j) be a nonnegative hermitian matrix, we introduce the following minimization

problem ,,..* i . .

I

,°.1*



b'%

14~~~. .... V..1

(24)

f 39 9dX- ijfor 1 -Ci, 4 A)

Then, we observe that since 9 is invariant uinder unitary transforms of (9,..OA then

for any unitary matrix U in C

(25) -1 U- MU

so we may choose U so that U-Imu is diagonal and if ,m&) are the eigenvalues

of N, 10 - diag(mi,...,m A ) is the diagonal matrix with (ml,...,mA) as diagonal entries

then 1 N - 140  and we will denote 1N - % -N (OI,...mA). With these notations, - I

P I11,...,11 where = 161j).

Finally, we will say that a sequence (91, ... ,A in the minimizing set is relatively

compact up to a translation if there exists yn in R3 such that . 1

(I91(.+Yn), ..... n(+Yn)) - which is still a minimizing sequence - is relatively compact

in HI and vare compact in L' (with obvious notations).

Theorem IV.1: i) The infimum I c (-,0] and for all R < - there exists CR( such

that fi p + T + p " f , 9 4 C, 9dx (V
f3 P+ + d ( R f 1s" '9A1 4 RI R3 9i ;dx

f 3  P dx <.

ii) Every minimizing sequence of the problem (24) is relatively compact up to a

translation if and only if the following condition holds

(26) I < I(ml,...,mA) + 1(1-u 1 ,...,1-r A) for all (mi,...,A)

such that 0 < mi < I for 1 4 i C A, 0 < mi < A. Of course, if (26) holds then there

is a minimum of (23). i

M) If a < o where Go is same positive constant depending on A, h B, a, 6; then

I - 0 and there is no minimm of (23).

Remarks: i) In general, we do not know how to check (26). The answer seems to be highly

dependent on A in view of the numerical computations which have been performed. In any

case, checking conditions (26) when numerical computations of ground states appears to be a

good test since (26) means a certain stability of the absolute minimum.

-16-
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ii) In fact, as seen below from the proof which again relies on the concentration-

compactness arguments [331, the concentration-compactness method not only shows the

necessity and sufficiency of (26) but also predicts what can happen on minimizing

sequences. Let s give a few examples: 1) suppose I - 0, then there are minimizing % Jh

sequences converging to 0 in L
P  

for p > 2 and the density vanishes (in the sense of

[33]), _

2) suppose (to simplify) that there exists a unique set of values (m1l..... A) such %

-i .. - -- . h

that 0 mi -C for 1 < i < A, 0 ( mi< A, 1- P( whl....em + 1(1-r 1.... I-mA, hile
i

(26) holds for all (mlt...mA) 0 (ml'...'mA). In fact, this over simplification implies

m. .***A but we will ignore this for the sake of the argument. Two cases may occur: the

simplest one is when the two minimization problems I(mI,...,mA), s(1-rI ,...,1A satisfy

the analogous of the subadditivity conditions (26). Then, there are minimizing sequences

of (23) which are not relatively compact up to a translation and any such sequence

On ..... , ,breaks into two parts%

where *,, n are relatively compact up to a translation and are minimizing sequences of

I(M l..... 1(i1- ,..., 1-mA) and thus (extracting subsequences if necessary) converging

to minima of these problems. in addition, roughly speaking the distance between the

supports of ! and : IX I 2 goes to - as n . The second case concerns thei _ i

situation when 1(ml,...,mA) (or 1(1-u 1 ,...'
1 MA)) does not satisfy the analogue of

(26): then we may continue the above argument and in turn * can break into two

pieces. If we knew completely the function I(.m, ... ,mA), it would be possible to

determine completely the behavior of minimizing sequences: vanishing, dichotomy into n

parts converging to minima of subproblems, dichotomy into n parts with (n-1) pieces .1%

converging to minima of subproblems and one piece vanishing.

iii) Again, we can treat as well the case A = 0 and the analogue of i) holds.

-17-
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At this stage, it is interesting to briefly explain how all the above phenomena are

related to various physical situations which essentially depend on the set (N,Z)

characterizing to numbers of neutrons and protons. In fact, it is experimentally observed

that the existence of a nucleus crucially depends on the set (N,Z) as we explain now with

the help of Figure 1 below taken from N. Effer (15]. In the plane (N,Z) the stable

nuclei (infinite life-time) are indicated in black. Admitting that the A-body Hamiltonian

and the Rartree-Fock approximation correctly represent the reality, these values of (N,Z)

would correspond to "nice" minima in the problems we are considering here and below (the

strict subadditivity inequalities should hold for such values). The dotted grey zone

corresponds to unstable nuclei which are known today and whose life-time may vary in

between 1015 years and some milli-seconds. Let us mention that a little mora than 2000

nuclei are known: about 300 exist in nature while 1900 were "built". Between 2000 and

4000 more nuclei are expected to exist (mostly unstable). Finally, the majority of nuclei

currently observed in nature (263 out of 287) are stable. The white zone, delimited by two

lines, correspond to (unstable) nuclei which are to be discovered. For HF problems, those

unstable nuclei correspond to minimization problems where the strict sub-additivity

inequalities do not hold and minimizing sequences break into severl "compact" pieces (see a

precise example below). The two lines, the so-called "drip-lines", beyond which no nuclei

are expected to exist, are precisely associated with the loss of exactly one neutron

(Sn = 0) or one proton (Sp - 0). In our context, this situation would correspond to the

case when (ml .. A,mA) (1,0,...,0) in Remark ii) above i.e. minimizing sequences break

into two parts: one which is "compact" and converges up to a translation to the minimum of

a I(0,1,...,1) while the other part vanishes. The zone beyond the drip lines should '-

correspond to similar phenomena where minimizing sequences break into several pieces one of

which vanishes.

in order to illustrate the situation concerning the unstable nuclei we shall restrict

144
ourselves to two examples. The first one concerns the nucleus Nd(ZX60,N=84) whose

60

lifetime is quite long (about 2 x 105 years). This nucleus is unstable and eventually

decays, emitting an alpha particle (elementary nucleus composed of 2 neutrons and 2

-18- r.-.. ,
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140 n anonwrts"' : ' -'

protons), into the two stable subsystems 58 and z and one writes

144 140

60 so 1..,

240 """""
The other example is provided by the nucleus 94 Pu which spontaneously fit one into two

stable nuclei

240 134 106Pu T + M0 *

94 52 e 42 0

In our context (once more admitting the models are good enough to reproduce these fissions

and this seems to be the case in view of HF numerical computations) this obviously

corresponds to minimizing sequences breaking into two parts which converge (up to

translations) to minima of appropriate subproblems. In fact, if we were to use a nuclear

force realistic enough and if we knew completely the functions I(m1,...,I } we would be

able to predict all unstability patterns (or confirm the numerical computations at least ..).

We wish to conclude these physical considerations by indicating that KF minimization

problems (with possibly the extension to HFB problems - see section XII) lead to numerical

computations which reproduce quite well at least parts of th. diagram below (stable nucleie, -::::

some unstable ones, drip lines...): the restriction being essentially due to the

difficulty of solving numerically these problems. And we refer to 3. F. berger, 14. Girod

and D. Gogny [6), M. Girod and a. PGrammaticos [211, D. Vautherin and D. N. grink [48], P.

Quentin and H. Flocard [44], J. Negele [41] and (42] (and the references given therein) for

various extensive computations. knother observation consists in remarking that for

unstable nuclei in fact several different fragmentations are often possible with one being

more probable (statistically) and these various choices could be related to dichotomies of

minimizing sequences corresponding to values of mn.... m strictly between 0 and i.

rinally, we wish to warn the interested reader that the above considerations indicate that

strict subadditivity inequalities may be very hard to check and in addition should depend

in a sensitive way on A (or (N,Z) for problems below...).

.• 
.
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Figure 1

Proof of Theorem IV.1: it is enough to prove the existence of CR. Remark that

P T + IVP12  PB + R (Vq)1 2  1 +1 P, o
441 4 9,4

and P 2+C(a,8)p so BE91.. . Vl f t 3 P )PT dx - C(C1,S) and i) is4 6 R3 + 4

easily deduced. Again part ii) of the above result is a direct application of the

concentration-compactness argument C( 1. We will not give the proof but instead we will

explain the main idea used to prove the sufficiency of (26). If (9,.,n is a1
minimizing sequence of (23), then we apply the lemma below (proved in (331) with the

3 in
probability Pn on R whose density is -P (i.e. the density in Nuclear Physics

terminology I

toemA I.2:T~t(Pnn be a sequence of probability measures on RN Then there exists a

subsequence that we still denote by P n such that one of the following properties hold

-20-
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, % 1
i) (compactness up to a translation) ayn V, > 0, 1R < -

( , nI l n R ) ) 1 -C " , -

ii) (vanishing) VR < , Sup PnB y,R)) 0 n

iii) (dichotomy) 9a c (0,1), Ve > 0, VM < R NR0  I , + R N, Rn such that

lpn (B (yn ,R )) - a l 4 E , IP n (E (y ,,, )c )  - I " a ) l 4 E .
If Pn or p vanishes (case ii)) then (see (33]) v 1onverge strongly in

I~(( nu~ n nP .. '( h(~R))-n conveg stolyi

LP(R3 ) to 0 for 2 < p < 6 (actually < 12) and thus I = lim E[4 1... . > 0. Since
n,.

one checks easily by a scaling argument as in the proof of Theorem III.1 that IM 4 0,

this means I = 0 and it contradicts (26).

If dichotomy occurs (case iii)) then we translate (9 . A ) by yn and roughly

speaking we split these functions into their "restrictions" to B(yn,R0 ) and to B(yn,R)c

and we denote by ), (X"...,Xn) the two parts. We may assume that .. .

f ~i*J*d. -- m f i XJ* d: -m

3n n n i R J 3 XnXn n ij ij

for some hermitian matrix (muj) such that (essentially) mu ii A hecnraito

with (26) is obtained by remarking that

1 A 1 A 1 A
n n - n n - n nI . n n n

Therefore, if (26) holds then automatically we are in case i) and we conclude as in [33]

provided one observes that since y is not assumed to be positive there is a little

difficulty to pass to the limit which is solved by the

1 tLemma IV.2: Let n'' 9 n converge weakly in HI(R 3) to , , Assume in addition3

that p ntn is bounded in L
1 
(m3). Then PT C L(1) and

1 2 VI d(27) lim f 3 n dx ) f 3p dx, lim f p P n I n' .41 1 d f 3OTd4

n R Rt n R Rt

Proof: The first part of (27) is a consequence of Lemma 111.3. The second part will

also be after a few considerations. We introduce the nonnegative, convex, quadratic

functional for all z c CA, 0 OP Io... *VA

Q(ZV) = - -+ zj 2 -- ( t i
2 ) 1 q. (zVw.)! 2

-21-
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Observe that Q(Y,Vg) = (1+p)- _ [PT. ,.

Now, if we et 'n , Q(nVn), gn is bounded in L
2(R3,. And

we may assume that gn converges weakly in L2  to some g. If we show that

g ;){(,)- where g ,,..,A), then applying Lemma 111.3 with fn = (1+n) we

conclude easily showing the second half of (27) on any bounded domain of R3  (this is
1 12 ,

enough since 0T - 4 ) 0).

Since Q(z,VY) "2 is convex for all z, it is clearly enough to show that for any

3

f * (,'VQ) 2 1/2 (0, 0)1dx 0

R

Since Q'2 is continuous on bounded sets, we introduce the local modulus

(6) sup( IQ2 (z,p) -Q/2 (z+h,p)I / I I R, IzI z R, Ihi ' 6 .--

for all 6 > 0, R <

and we split the above int egral into integrals over several sets that we bound as follows:

onn

by.
* on {I~l>R r I~ R; o nl r , },teiteli bounded by- "-1

c c*(_) IV0nI + IV0I)dx 2C(o) meas(-)1/2  CM

* on n ol, n" O' 0 R; 01n-01 > 6}, the integral is bounded by

W R(6) R 3dx= C WR(6)

This enables us to conclude easily. Another possible proof (communicated to us by

H. Br~zis) is the following: since PnTn IV,,- 2 PT.. |vp12 are nonnegative, it is

enough to show that for all M

liraT O12d1I ;0 f PT-- Yn 2 x 
A IVP2 2ax

Lm A (fi n 4 n  A(4

i=I i= I

Now, by Eqrov's theorem, for all C > 0 there exists a set E such that its complement

has measure less than E and in converges uniformly to 91 on E for all i. Denoting

-22-



by F =E r)C~(I~ M)) it is enough to show that
i-i

i~.I _Tn IV,,n12 d.X fV or T IVP1 2 dx:

Observe now that Ont Tn (for 1 4 1 4 A) are uniformly bounded on F and converge

uniformly to p,.(p. Therefore, we just have to prove j
lin fF Q(0,70)dx > 'F Q(9,VO)dx

To this end, we write On = 0+ *,' and we obtain

Q(0,Von) = Q(OVO) + Q('Vl~n) n Q0VV

where Q(z...) is the symmetric bilinear form associated with Q~z; for any z c CA. In

particular we have

Q(OV0 Q(O,VO) + 2Q(9,V,V*n n

and to conclude we observe that

'f Q(OV0,V1P0 )dx =f 1'VJi1 dx

where H is some fixed function in L2while V'1 n converges weakly in L2to 0. (A

similar proof works for Lemma t11.3).0

We next consider the more general situation of a nucleus with N neutrons, Z

protons (so A-N+Z). We may number the wave functions 91in such a way that

correspond to neutrons while (PN+1 . A correspond to protons. We also denote by P0n

Tn n(xIy) (reap. P T ("c,y)) the various densities of neutrons (resp. protons)

i.e.
N N N

A2 2

0 (x) - Y i(x)I 2, T (X) I V' X) 1x2 , p (x,y) = P (x 1P(

iN+N

in this general case, the functional to he mininized is

2 t 2
(28) E1 T - 0 H(1 + -10) 2- (x + 1-)(P2 + P +J Pi

1 'n' 32,n 2 0 2 n p

OT t - (1) T + P T ) I Vof2 - IVP 1 + Io 12) +
4 4 n n p P 16n

ti 2 12 1
(x)o0d~ ;-Y Ppycd - FX R I(xYIdxcly

-2-
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w . C i, to > 0, x 0 e (0,1), C, Of y, , t 1 > 0.

Observe that the last two terms obviously correspond to a Coulombic interaction

between protons. Let us also mention that very often the last term (Coulomb exchange term)

is neglected: this makes no difference on the type of mathematical results we prove.

Still about the form of the functional it is worth remarking that the parameters a, B, Y,

are not completely independent since in fact some of these terms are exchange terms.

The first situation we studied in this section corresponds to the situation when the

Coulomb term is neglected (e-0), W=Z and Pn " Pp . 1 p, T T - - T. Finally, we
p 2 n p 2

would like to remark that E[,1,...,gA] is not invariant anymore under all unitary

transforms of (1,...,IVA) but only under the transforms of the form

U 0
(29) 0 _ (o n  U

p

where Un  (reap. U) is a N x N (reap. Z x 2) unitary matrix. -

And we consider now the HF minimization problem

I = Inf ,.,.. 13), I A) V e H f'"

I In{E~qC RI (a3 f Prdx <

* (30)

13 9i~dx j for 1 4 i, J (N and for N+1 ( i, j ( A)

together with its extension i-d"mn a an

*(31) .-

f3,*dx3 - mi for 1 ( bi ( N and for N+1 ( i, i ( Al' -

whr =m~ .~) is a block diagonal hermitian nonnegative matrix. Using .
whee M (ij) =  0 Mp.-'

p

unitary transforms of the form (29), it is clear that we may still diagonalize M into

diag(m1 ,...,m,) where mi ) 0 for all i c {1,...,A). Therefore 'H = I(m1,...,mA) where

-24-
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I(ml ..... ) " Cnf(ZOP . A I 1P HI(R R ) 3  dx <

•
4P ? idx - m for 1 4 i, j < N and for N+1 < i, j < A)

R~3 i j i ij 
.

Observe also that the orthogonality conditions in (30) still enable us to write down Euler-

Lagrange equations (the HF equations) where, up to a unitary transform of the form (29),

the matrix of Lagrange multipliers (ei in (17)) is diagonal and the Lagrange multipliers

are eigenvalues of self-adjoint operators.

Before going further in the mathematical analysis of (30), we would like to mention

the way the parameters to, ti, x0 , 0, B, y, 6 are chosen in realistic computations. The

parameters are adjusted by a simple fit to the binding energies and equilibrium densities

of some fixed nucleii (essentially oxygen-16 and lead-258). Once this fitting is performed

(see the tables in D. Vautherin and D. M. Brink (48]1, one can compute all other nucleit by

solving numerically (30).

It ia clear that conditions on the parameters are needed in order to insure that

I > (and that minimizing sequences are bounded). The boundedness of I and the

solution of (30) are analyzed in the

Theorem IV.4: i) Assume that a > (0+8)/2, a + SAy > 6+8. Then for all N, Z the infimum"

I e (--,0] and for all R > 0 there exists CR ) 0 such that for all , in

the minimizing class satisfying E[I,...,#A] < R then f p+ + t dx < CR."

ii) Assume that a < (8+6)1/2 then, for all N, Z ) 1, I =

iii) Assume that the conditions given in i) hold. Then any minimizing sequence of (30) is

relatively compact up to a translation if and only if the following condition holds

I < I(m1 ...,m + I(1-m ,...,1-m A ) for all Mi [0,1J(1i4A)

(32) A

such that mi C (0,A)

In particular, if (32) holds, there exists a minimum of (30).

-25- o,---
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%
Remarks: i) The analogues of the remarks given after Theorem IV.1 still hold here.

ii) There are other conditions than a < (B+6)/2 which imply that I - i. We mention

only this one to emphasize the following phenomenon: take N-Z, e-0 then in this case it

is often assumed in the Physics literature that it is enough to consider (P 'q*..A) such

that Pn Pp P , T =p = .- T without changing the value of I. And this is

completely false in general (it would be certainly of interest to understand completely

this kind of symmetry breaking). indeed, choose a, B, , > 0 so that

a < (8+8)/2 , (a+y) > (046)/2

then ii) implies that I - - while

Inf{~~ ,, c ~ f P -TZn([1 .... ' 9 
i 

I
' 3 ij: i6' 3" 

<
' On " p =

7 :.
v -T "-T}

n p 2

Inf[E' A1,.... 9A i C H ' 3 i j aii ,  OT <*

where

o2 3t 21.
E' [1 ..... ] =f - -" + -)P + 

(
Y- YpI +-

1 A R3e 2m 4 2 16 2'

+-" I 3dx •
12

Hence, by part i) of Theorem IV.l, the restricted infimum is finite as soon as

(a+Y) > (8+6)12.

Proof of Theorem IV.4: We begin by proving part i). We first observe that we have

denoting by Y' = yA6

- P (P + p T p ) - - , 2 I+ 12

4 4 n n p p 16 16 n'% 'p'

)(P T + P T T +-( t P T + )L2 (V 0VPnI
2 +YP I

(0 aLVp 16
4) +p p 4 n n p p np

But l7Pn
2 

4 4 P nTn', 7p2 p 4PpTp, and j

1(Vpn,Vp)I 2(Pn n + IT), I(Vp ,Vpp)! C 2pT n + Pn T p )

.. ..-...'.

!-.-26-...-..
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so the above quantity is bounded from below by-- 
.%

)(PnT+ P T ) (p + Sp) - (TV ,VYp) ) V PT4-n - , Op 4 p n n-- p!

where v is a positive constant. And this yields
2~ _e

2  1 Op~ )2dy '

, t:..... ] ) -T + V OT - CPdx - X-) dxdy

A R3 2m 2R3 37-7

for some C > 0 (depending only on to, x0 ). Next, we remark that p p(x,y) 2 ( p (X)p p(y)

and thus by standard convolution inequalities

pp(Xy) dxdy 7 CP1 6 /5  1 3(!3)

3 3 R R(R) L (R1) L()

R~tR

and by Sobolev inequalities i1/ "x)1/2
C(I f 3 IV~iI2dx)1/ 2  C(f 3  T dx)':i

where C denotes various constants R3 depending only on e and A. Therefore, one gets

;0I'''A _ f
3 

T dx + v fR Pzdx - C f p 2 dX - C(fR T dx)
/2 ,:'-W

It just remains to bound conveniently fR3 p2dx. In the computations that follow C

denotes various constants depending only on A:

4.--

", ~ ~~( I f 31i dx)/ ( f 3'il dx) / - '.: [

-o

by H51der inequalities, and since f IT 2d. Ifi  1
R3 12x

= Ifr l 
)

-27- 
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-C C(f 3 6dx)I/5

< cf 3 Ivi
2dx)3 /5  by Sobolev inequalities

< C(f 3 PT dx) 3 1

This allows us to conclude the proof of part i).

.* The proof of part iii) in the same as the proof of Theorem IV.I and thus we will skip

it. To prove part ii) we have to build appropriate test functions. By simple

considerations it is enough to treat the case N-t- so denoting by 9 ' 91, 1 9 2 we

2 2have Pn " 2 Op . 2 since we will take real-valued 9, *. We construct spherically

symmetric functions 41, *m as follows. Let to > I be such that (__+6. alt2 > b- let

60 > 0, r0 > 0: 80, r0  will have to be determined later on and we assume at least

0 < 1/4, r0 < 1. We are going to build first em, 4m in the ball B(O,r0) *m will take e

values in the interval [t0-60 ,t0 ] and m . (2t2 _ (*m)2)1/2 . We next compute on the ball

B(O,r o )  ,

2~ .m + a mrm B m mm L-6 m 2 1 m 1 2-"-.
2t T - (PLPf+T p p) + 1L I V -I (IVPm1 + ,,mp2

)
2 m44 n n p p 1 6 1 6 n

2
1m,2 a 2 m B+6 m 2 2 m)2)C 'iv' -m + j (1+(F*) )P - _ ((• ) (F,) + (41 ) )

where F(t) (2t2 - t2)/2. Now for 60 small enough IF'I takes values as close to I

as we wish while (9m)2 (41p)2 take values arbitrarily close to t Therefore fixing

8 0 > 0 small enough the quantity between brackets is bounded by -v with v > 0. Since

we will extend pm, 4m outside B(0,t0 ) in such a way that Vm, 4" and their first

derivatives are bounded by fixed constants (depending only on t0 ) and have compact hE

support say in B(0,1) we deduce

B! ~ ~ -mm -'B(0,r) IV1Idx + C

4r3

Now, we choose t0  by imposing ft2 + Flt 00) 2 } 47.2 C 1/8, and we define 4m as0 0 0 3

-28-

. . ".. ..

....-. ., .° . ... ........... . ... °.-..."....... "--. .. ,..-.--.;',--- .°---'%

• :'''--':- :'''.' :'"-'. .': ":: *'- :' ' * %:''' *.': '':?-:. ' .1"''.. ** . **'-: -ii ,"i:; :' . .<. :'. -: . ..-." . ':.2' >.::1 ' ,'''2.
, -. ... . . -. . . ..... :. , . .'. . :-,-. . .-.. '....-.'.'.,-.; ... ,.-.- ,..-. .:*,..;,,.'.; .-*....,.- ....



follows on (0,r0 1)

*( t if lXI - - if l,.I >r 0 +
0 0 2 2a 0 2 2m

r r0  ' I 2 r--+--t -  /2 + 6 o ( 1 "1  - - ) if j- " lxi 4

It is of course easy to extend im, *10 outside (0,ro) as we claimed above and we can

even do so imposing

f (T) 2 dx  1 f ( a ) 2dx 1,f q m "m" x 0R.3 3 ,f-1 d -o-..,.
R R

(this is where we use the restriction on ro). Computing

2 r241 0  1 3 r 1 3
iveidX 62 2 (:L + )3 - ( - L) 3 +fB(0,r 0  0' 3 2 2m 2 -2m Is

we prove that X[#,m s "

Remarks: i) Let us observe that even if we restrict in ii) the infimum to spherically W,

symmetric functions, the infimum is -.

ii) The idea of the above tedious constructions is to choose at least locally near 0

.,2 + *2 constant, Iv, lv*2, ,2 ~ thus cancelling the y1V0 term while

*making the other terms 0 PT-00 nTn +p ) -T P)~ 12pn + 17p 2)approximately equal to(a 1 - )" 7 T.

2 2

We would like to conclude this section by emphasizing Remark ii) following Theorem

IV.4: we showed there that if N - Z, for the above class of problems, it is a priori not

correct in general to restrict the infimum to configurations such that T n T

Pn - p . In fact, we gave an example of a dramatic symmetry breaking in the isospin

variable (between n and p i.e. between neutrons and protons). Of course, this

phenomenon is by no means restricted to Skyrme's interactions but will be present for

general interactions (at least for some range of parameters). I precise study of this

phenomenon (maybe on simple model problems) certainly remains to be made, investigating in

particular the possible bifurcations corresponding to it. Prom the view point of physics,

this symmetry breaking does not seem to have been observed for nuclei such that N Z in

-29-
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particular because realistic computations take into account the Coulomb force between

protons (and thus the symmetry is not really satisfiled). However, it would be interesting

to look for related effects such as metastable states or local minima.
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V. Other interactions i-i
We have considered in the preceding sections the case of the Skyrme's interaction '-"

which basically corresponds to the choice (5) (in fact the difference between neutrons and

protons wave functions 91 in the preceding section comes from the fact that -4ave *%.

functions should depend on the so-called isospin variable which takes fixed different

values for neutrons or protons and that the Hamiltonian acts also on this isospin

variable). It is easy to understand that (5) is a very simplistic model of nuclear

Interactions which, even if they have a short range, do not have *zero-range". However

this model is often used because it already gives reasonably good numerical results and the

Hr equations being completely local are somewhat easier to compute. Nevertheless the

theories allowing to derive the effective interaction V from first principle reveal that

one has to consider more sophisticated parametrization (i.e. different V...). Furthermore

several extensions of the HF theory (as for example time dependent Hartree-Fock problems,

Rartree-Fock-Bogolyubov theory...) make necessary the use of more realistic interactions 4. o

V. On all these basic issues, we refer to J. Negele [43).

In this section we are mainly interested in the case when V is given by (3) even if

It Is quite clear that most of the arguments we present below are still valid for much more

general V (including (4) as another example). We will not bother to indicate precisely

what are the mathematical assumptions we need: it is an easy exercise to figure out in

which L
P 

+ 03 class (for instance) one has to take V and we leave it to the reader.

Again to explain the difficulties encountered, we begin with the scalar case which

more or less corresponds to the case of the alpha particle. For V given by (3), we

introduce the functional

(33) , ! j + tf +2  f . IPl2(x)V(x-y)ll (y)dxdy

where t0 > 0. Observe that we also changed the type of nonlinear terms. And we want to

study the following minimization problem

(34) 1 - Inf{E[o]/v c H(lt 3 ), 3 1,12 dx = 11

that we embed in the folliwin7 family of priblems

-31-
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(35) - Inf{EC934 e H I(It 3 f , Idx -A -

where A is a positive parameter. in fact solving (35) for some X > 0 amounts to solve

(34) for different values of m t 0 , a, 8 as it is easily seen by a scaling argument. We

begin by a simple observation

Proposition V.1: i) For all R < -, there exists C, <. such that 1 I I(3 4 CR  if "e

e H1 (2 3), 9[91 -C R, f R31 ,12dx -C R.

ii) One has always IN 4 0. If 0, B > 0, IN - 0 for all X > 0 and there is no minimum

of (35).

iii) There exists No c (0,+-] such that IN = 0 for A 4 N0 , IN < 0 for X > 0.

iv) If Q + - 0 < , then NO <
u /2 V /2

Proof: Part i) is easy and we skip it. If a, 0, E[q, > 0 for all 4, 0 and thus

admitting IN C 0 the remainder of ii) is clear. To prove that IN 4 0, we consider

, £ Vca3)  such that f R3,1 2dx - and we denote by ax) = (x)-3/2. Compting

Z[4a] we find

1 f 2 * 2 xl~ 1 1 ~4+2/3~
4 If I i + -4 {to f 19 2 dx '

2 333+ .1 f f 1 , 1 ( ) v ( C( x -y ) I 1 2 ( y ) x d y _ ' :

hence V[q + 0 as a *.

To prove iii), one first remarks that IN is nonincreasing since by the

concentration-compactness argument one has always

(36) ., -C I + I_- for all I c (0,X)

and IN-, 4 0. Therefore one just has to prove that IN = 0 for X small enough. Indeed %

if H 1 (23 ), f 3 1,12dx - X
R3

f t ()(XY q, 2( 1 i1 2  g~2 V
I ff Iy~ddyl 63 2(3) V 3/2 R3)R3xR3 L(lR3) L t) LL ()

C CX f 3 IVPI 2 dx

-32-
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b,~~~~~~ I. L qI. b*.'e'-I 1 - .W J

so for X small enough E19] ) 0 and iiI) is proved.

The proof of iv) relies on the following choice of 9: take 4 e D(
3 ) and set

(x) V(3/4(-). Then computing ZIP I we find

a a

2~

Eti I e fting + a to 3 •91 dx. +
R 3

+_ f f ru12 (x)11 2 (y) {a3V(h(xy) )-dxdy
X33

Remark that a 3V(ox) * + 1 )./.n .-)H o 2
6 (x) in WO vy) as a + o and we conclude

14/2 - 0 1/2

easily letting a go to +-.*

We next give a result concerning the solution of (35) 1

Theorem V.2: i) Every minimizing sequence of (35) is relatively compact in Hi (Rt ) up to
a translation if and only if the following condition holds
(37) IA ( Iy Y IX_, , for all y c (0,A) •

In particular if (37) hplds there exists a minimum of (35).

ii) If a,B ( 0 and if the following condition holds

(38) IX < IT, for all y c (OX)

then there exists a minimum of (35) which is spherically symmetric, nonnegative, smooth and

decreasing with respect to 1xi.
Remarks: i) Very little in known on the values of X (or equivalently a, 8, t0 , h ... )

for which (37) or (38) holds. We only got very partial results on this important question.

ii) If for some A0 > 0, (38) holds and (37) does not hold then there exists a minimum of

(35) while some minimizing sequences are not relatively compact even up to a translation.

If this were to happen this would be an extremely interesting situation. ,

Proof of Theorem V.2: Part i) is proved by a direct application of the concentration-

compactness arguments (33]. To prove part ii) we first observe that by a somewhat standard

symmetrization argument (as in Z. H. Lieb (281, H. Berestycki and P. L. Lions [5]) one sees

that IA agrees with the infimum of E(q) for 9 e HI(3 3 ), v spherically symmetric,

nonincreasing with respect to 1xi, nonnegative and .IT, 2dx T . Therefore, it is
R

-33-
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enough to prove that if (38) holds then there exists a minimum of

Is = Inf{3([] / g C Hl(R3), 9 in spherically symmetric, f 3191
2dx - X}, the other

properties of the minimum following easily. Now to solve IN we may either apply the

concentration-compactness arguments in presence of symmetries (see [341) and conclude

observing that since IX vanishes for A small then lie n i/n - 0 for all X > 0 and
n

thus (38) is equivalent to - i Is + lim n I Or, we may use a more standard
n

line of arguments showing first (as in (28], [46], [5]) that there exists a minimum 90 of
t- *,.

Inf{[9] / 9 C H(3), 9 is spherically symetric, f 1 2dx and concluding that

f Ie0 2 P - since (38) holds.

Before going into the general case, we study problems like (35) with t - 0 in which

case (35) reduces to

(39) 1 "nf{t f _I,4 +21 3dx + .. f f I.l 2 (x)V(x-y)ll 2 (y)dxdya0R 3 3 3

c L2 (t3) () L14/3 (3), f 1q 2, -x

(in fact the value plays no role in the analysis below, for example everything below

14remains true if we replace - by any p > 4). We still denote by Z[] the functional

that we wish to minimize. We can prove the

Theorem V.3: i) If for any p C LI(R3), p ) 0 we have

(40) r f p(x)V(x-y)p(y)dxdy > 0

R
3

xR
3

then Ix = 0 for all A > 0 and there is no minimum of (39). On the other hand, if (40)

does not hold for some P C LI(R), p 0 then IX < 0 for all A > 0. This is the case

if, for example, 0+0 < 0 or -s- + - < 0. In all that follows we assume that I ( 0
N1/2 N1/2

for all X > 0.

ii) Every minimizing sequence of (39) is bounded in L2(R3 ) ) L14/3(R3).

iii) Every minimizing sequence of (39) is relatively compact in L2 (R3 ) r) L1 4/3 (R3 ) up to

a translation if and only if (37) holds. In particular if (37) holds there is a minimum of

(39).

iv) The condition (37) holds if A is small enough.

-34- "'
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v) If a and 6 are negative, (37) holds for all A > 0 and there is a minimum of (39)

which in spherically symmetric, nonnegative, nonincreasing with respect to lxi and with

compact support. % -

Remarks: 1) If we assume that (37) holds at X > 0 then we can prove that either (37)

holds in a neighborhood of X or there exists a minimum of (39) - that we denote by g o

such that to C L2 (3) f) L1 4 / 3 (i3) and
3'') a ~e. 14 11/3 2

(41) E'(V) - 0 i.e. -tO 9 90 (g0 *V) a.e. in R3

(we may always assume that g0 is real-valued, nonnegative).

Indeed, if for any minimum of (39), (41) does not hold then, assuming that we have

built a sequence Yn + X such that (37) holds for I and denoting by 9 the

associated minima, on one hand Vn converges (up to subsequences in 0 1 4 / 3 (10) r) L 2 (2 3 )
to some minimum (Po of Ix and on the other hand there exist e, satisfying

3
(42) E( n ) + 5 n n  0 a.e. in a , 0 < V 4 0n C

for some positive constants v, C.

Now we argue by contradiction: if (37) does not hold for IX where An + A, then
n n

there exist Yn An/2 such that
.- +I , 0( (AY

IA n In In n n n

and since (37) holds for IA we have that Yn A. Next, if (37) does not hold for nI.-"

there would exist 8n C [yn/2'yn
)  such that I - I6 + I Yn6 n .  In particular we have

n nY,~~ n yd
-I +I 

+ + In n n n n n n n

But we always have

Iy Y +A IIX + IAX-8
n n n n n ni n n n n

so the above equality yields
-I + I , I . I

n n n n n n n n n n

Since (37) holds for IX, the first equality implies that 6n + A. But then the second

equality gives a contradiction since (37) holds for A small enough. Therefore (37) holds

for I" .n

To conclude we argue as in (34]" observe that '.
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X1/2 A~ 1/2

(yn Kn-Yn)

for some K > 0 (the almost equal sign can be easily justified and the above inequality

holds rigorously). On the other hand, we prove below that IAX" 2  converges to a negative

constant as X goes to 0. Hence we get
Kl(.n-y n  4 C(X n-Yn)-''-

and the contradiction proves our claim. •

2) We would like to remark also that, if we do not assume that a and B are negative,

the question of the spherical symetry of the minimum of (39) (when it exists, as for

example when A is small) is open.

3) Let us finally point out that somewhat related problems are considered in J. F. G.

Auchmuty and R. Beals [1], [2], P. L. Lions [361, [33]. 1%

Proof of Tr.eorem V.3: The proofs of i) and ii) are standard: the sign question being a

consequence of the difference of homogeneity of the two terms in E, and the negativity

-N/2 -N/2of 1A  when an + -y < 0 being proved as in Proposition V.I. Part iii) is proved

by a simple application of the concentration-compactness method.

We now prove part iv). We first show that

(43) I~X-2  + I - Inf{1 f f 19I 2(x)V(x-y)II 2(y)dxdy / T c L2(it), 3 1 2dx 1 .
A I f

3
XR

3  CLR

Observe by the way that the infimum in I is achieved by a simple application of the

concentration-compactness principle. To prove (43) it is enough to remark that on one hand

I A2 y while on the other choosing Tn C D(23 ) such that

' 2( =i I I 2(xV(x-y)llnI2(y)dxdy < x + 1

R 3R3

and 1f 3I#!dx 1, we obtain

1 4 E~ n1 q C X
2
+
1
/
3 

+ X
2 (I + 1X n n -
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Next, let us argue by contradiction to prove part iv): assume there exist X.,

and Y. C (OA n ) such that

(44) +-
X n " In X In.Y n %

This yields ;

A 2 A-y X.

Yn n° "

and this combined with (43) implies that up to subsequences r converges either to I or

XN
to 0. Replacing if necessary Y by Xn-'n we may always assume that y n/An converges

to 1. Next, we fix n and we take a minimizing sequence 
9 k for Iy . We remark that

I n hs [n - n 1(e) E i ' (-- ) E [( "IX 7) 'P'.-!11T) 1 -v2
nt I n kc n nt

4+2/3
where we denote by 31t,] - to J 31 dx. on the other hand E1 [Pk) + E2[*k + IYn

so we obtain

A 2+1/3 X 2 X 2+1/3
I ' () In + lim {E2tk]([$) " MA) (A )I

n n k n, n,.

+ 2 n + in.{i EtI~() ~
Y+ (%f) - Y T ""'"'

Recalling (44) we deduce finally . ,.

A 2 A 2 Xn-Yn 1/3
1A_-n ' CV ) - i)xY + (f) {(i + " 1 )lif (i -2C-...

ftY n n n n) ;n k ' n-

Of course _lim {I n- iOP depends on y and similar arguments to those used to prove

(43) show that
Al, {I' 2,'I} Yn2 + 0

II n nn a ' "a "n

Next since ' 0 dividing the above inequality by (Xn-yn)y we
(n-yn)y n  -y)2 y n n,-- n

n n n nAy

obtain passing to the limit: S C 21, contradicting the negativity of I. And the
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Ih

contradiction proves iv).

We now conclude the proof of Theorem V.3 by proving part v). The proof involves I

several steps: 1) we show the existence of a spherically symmetric, nonincreasing minimum

of (37), 2) that such minima have compact support. It is easy to conclude that (37) holds

by observing that if 91, T2 are the respective minima of I., IA-, for some y c (0,A)

and if say 0' 92 are supported in a ball of radius R then considering

;(x) plx) + 9 2 lx + 2Re) )'[,'J

where e is any unit vector, we obtain

f 3I;12dx f = 31,1 2 dx + f 3 1,2I
2dx - -

RR R

E(g] E[g 1 1 + EP 2 ] + f f 'p1lXlVlx-yl' 2 (y+2Re)dxdy

RxR3 R 3

and (37) is proved. (Observe that p1 p2 ) 0 and V < 0.)

To prove 1) we argue as in the proof of Theorem V.2 introducing the problem in

I =Inf{t 0  P 17,3
dx + f I p(x)Vlx-y)p(y)dxdy /

0 f 3  4 XRR 3xR
3

* spherically symmetric, p c LI (R
3
) r" L

7
/
3
( 

3
), )0 a.e., f 3pdx 4 X). Then this

problem is solved exactly as in P. L. Lions (36] using the spherical symmetry and the

smoothing properties of the kernel V(x-y) and there exists a minimum p0  which is

nonincreasing (using again symmetrization arguments). If we prove that f13 00dx - X then

Step 1) is completed considering g0 = ?%. In order to do so we argue by contradiction

and we assume that f 30 dx < X. Then the necessary conditions for minimality may beR 
3  . % '.. .

written as

P 3 + i(P0*V) = 0 a.e. on the set (p > 01

3 t 0  0 ~2 00

T t0 P0  + -(p0,V) P 0 a.e. on the set { = 01

But P0 is spherically symmetric, nonincreasing with respect to lxi so the set (p0 > 01

-38-
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.- 7. ..- 7:

is a ball (up to zero measure sets) possibly R3 itself. If this ball is not U3, on its

complement the above conditions yield o0*V • 0 and this is absurd since P0  0, PO 0

and V < 0 in R
3 . 

Therefore {P 0 > 0) = 3 and

14 t 4/3 f " "0"e_

00 3 p0 y,.e+16 }y

t {f o  _(Y(lC" l 2 + fle'-VIX-Y 2 J (
flyl-(1xl "Ile-u y2 0 l-l'l OlX .!},

since P0  is radial nonincreasing. A simple computation shows that the above integral is

bounded away from 0 as lxi + - and we obtain a contradiction since P0  0 as

lxi +-, P0(x) > o on R3. Hence, step 1) is proved.

The proof of step 2) uses similar arguments: indeed let 40 be the above minimum

(P0- / , 90 satisfies for some Lagrange multiplier e 0 0
14 t 11/3 + 9 -0 a.e. in R3

If 90 does not have compact support, since qO is radial nonincreasing we deduce that

y0 (x) > o on R3 , 90 + 0 as lxi + %

Dividing the above equality by 4p0  and letting lxi got to - we obtain 8 0. Then,

PO " 9 2  satisfies the same properties as in the proof of step 1) and we reach a

contradiction thus proving our claim. 0

We now conclude this section by considering the general case of functionals like (33)

for less simplistic nucleii: we introduce the following functional (which except for the

distinction between neutrons and protons basically corresponds to the potential V given

by (3))

h21
(4S) E( ... ,p A h f 3 T dx + 4 Y (W. f f p(x)Vi(x-y)p(y)dxdy +

13 A- i12 a3 XR3

i f f on(X)Vi(x-Y)P (y)dxdy Hi f f 0p(x)Vi(X'Y)oP(Y)dxdy" +

R3 X R3 j3 X 3

- 7 f f Vi(x-y)lP(xy) dxdy - BI f 
f Vi(x-Y)lpC (xy) 2 

dxdy 4.

J-1 ,2 R 3 XR 3  
3.XR
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2

-E +( l(X)12dxdy} + r f fj p -1t3R
3  R3xR3

- lpp(x,y)12}dxdy + to f 3 P'/3dx %
3

where Wi , Hl, Hi, Di (i-1,2) are given constants (which in practice are not independent -

roughly speaking W, - -9k, Hi - -Mi) and Vi(i-l,2) are given bys Vi(x) - exp(-1xj2 /P2),

and U1 , U2 > 0 are two given constants. Of course, we are using the same notations

-. concerning p, pn' Pp" T as in the functional (28) for Skyrme's interaction (section IV).

The HF minimization problem is then

. (46) I s Inf{([ 1 ... 'A]  / Hl(3 n3 1 3) -f

for 1 ( i, j C N and for N+1 i, j C A). I
We will not state a result on this problem because exactly the same result as in part

iii) of Theorem IV.4 holds here (and the remarks following Theorem IV.1 or Theorem IV.4

also hold here). Of course since Vi  L ( 3 ) for i - 1,2 the infimum and minimizing %

coefficients need to be made prior to the analysis of minimizing sequences.
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V1. pin-orbit forces

up to now we have constantly ignored the spin dependence of the various wave

functions. However, if this omission greatly simplifies the presentation and (probably)

the mathematicF f the HF minimization problems, for practical and realistic computations

one has to cope with the spin dependence and its consequences: the spin-orbit force. It 1%."%

is our goal here to try to explain the form of the spin-orbit force and to show that in

order to have a bounded infimum some precautions have to be taken (and this does not seem

to have been always the ase in the Physics literature on this matter). Let us also

mention that in the remaining sections of this paper, we will again slip the spin

dependence even if it can be restored without affecting the mathematical results (provided

b
one considers spin-orbit forces with the appropriate restrictions described below).

First, we explain how wave functions depend on spin and we will do so by only

explaining the computational rules. In everything we said in section II, one has to

understand now that 4(x1,...,xA), Yi(x) in fact depend on other variables namely

O(Xlfa1I x2,o2;.-xA~ A a i(x,a) ,

where the spin variables ai take only two values say +1 and -1. If we denote by x. =

(xi,oi)(1 4 i 4 A), the Pauli principle now states that the antisymumetry condition (2) has

to be understood now as a condition on permutations of the variables x.(14i4A). Then the

remainder of the derivation of HF problems goes through as before. It is possible to

consider now Vi(x,a) as a pair of complex-valued functions (spinor) that we will

indifferently denote by (jiL1, qi(-1)) or 1oq1.

The orthogonality condition becomes (if no differences between neutrons and protons "- -

are made)

(47) () (1)+ 9 i(-7I)(-)dx = 6ij' for 1 4 1, j 4 A

The spin dependence affects the Hamiltonian H and the potential V in two ways: the

first one is through the so-called spin-exchange operators (P.) which will basically mIx

the various products of Ti. The second one is more dramatic; it is the so-called spin-
,. -..-

orbit force which can be thought of as an additional two-body term.

-41-

I ° .

.. , =c , - . : [-." -¢ .2- "",:." :- .. ".2:: " . ...-... '.. ' .,''' .'''. '' ,". "-'L "A". .". ,. , , ..



Typical models of the spin-orbit force are zero-range models comparable to the choice

(5) of potentials. This model leads to a functional 4,1 A which in the case of

Skyrme's interaction (see section IV) is given by

I . ''"A ..... + 0 f Ia 2 + I 1 1d2 +

(48)

+ 7-2 Ij3(V,3) + (VOn n ) + (Vp ,3dx %

where 9 i given by (28), the parameter 0 already occurs in Z, W0 is a positive

parameter, J is the so-called spin density that we describe below and 
3
n, Jp are the

spin-densities for the neutrons and protons and are built in the same way as J

restricting the various sums to the neutrons or protons wave functions pi Pan we didi-

for 0n' Pp...). Let us also mention that the densities T, p now mean of course

A 2 + I V 'A12 ' ' 1 ( 1 .0 + 2 + 
1 
9 -1 

2 
)

We now describe J: J is a function 3 taking values in 3 which may be written

as (see 1481) .',

(49) J(x) --i ,oo ,(x,o)[99 (x'0,) x <ao'V>] I = .

where ais the Pauli spin matrix. The above bracket means that <01910> is a point

of R
3  

whose coordinates are the results of the action of the 2x2 muatrices Ox y, a-z

escribed below on nons) where the spin variables a, ic take values now in or

0 ) w i t h h c o v n t i o n s, + 1 " " h ma t r i c e s a x , a oU a r e g i e n b
0 0

(50) a0 ( = 1 0] ,0 0 ]  ~ *' " 0 - ) """'

1

ax Cy Us:

For example if a a' = ( ) then

0

.<0a Xc'> - (1 0)(, 0)(0) = 0

(a°<le '> " (1 0)l _1)(o)- 0

-42-
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0 J, .

and the point <O0*1'> in the point 0~j

In general the above quantity J is not real and at this point we need to explain an

important assumption in Rartree-Fock theo~y in Nuclear Physics. When including spin

dependence and spin-orbit forces (as one should), one has to work in the came of even-evenI

nucleii i.e. one assumes that N, Z and so A are even. Futheruore one assumes that the

subspace of occupied single-particle states is invariant under time reversal and this means .

mathematically that for all j (j C 1..N or j e N1..,} there exists J1 (j, C

{1,...,N) or j1 e {N+1,...,AI) such that

(51 ,,(~a -- a ip;cx,-a) for all x c R a + I-

i.e. V+
9

1 -V i~ 9-"V

it is possible to use this assumption by dividing by two the number of unknowns

(N, Z, A become N/2, Z/2, A/2) and we still denote by N, Z, A those reduced nusbers)$ '

then the HIP minimization problem and the functional remain the same and one may compute the

three components 'tJy of J. A tedious computation yields

A

(52 - Io V9M - IM(tpi(-l)Vy9iC(-M +

J = {-I(9 M1V 9 (M) + WO( (-1)V{I * (-M) +
y i xi i

(53)

+ Im( (O ) I V I (-M) + Im(V (-1)V ' 1))
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Am
i {Rel-(i)1)vx )l + Re(l l1)V x 11)

32 1 Xi

(54)

I~~~ V y q7 d o ( , j N an o + (, j & .
* ..

We will only investigate here the difficulties concerning the boundedness of

minimizing sequences and the finiteness of the infpeud, coming from the addition of the two

spin-orbit terms in the functional s given by (48). Of course, we are interested in

I - Anf... A I I e Ho1 3 pTd <

(55)
I 91(x'CF)v;(x,a)dx ,, for UI<, j4N and for N+1It, J<A} k

Once these equations are solved positively, then the analysis of (55) goes along the same ,

lines than in the preceding sections (and raises even sore open problems). : '

The considerations we give below show that I is finite in the case of the Skyrne'e -s"

interaction if Wgo is small enough (and a, 0, 6, y satisfy the conditions of i) in

Theorem IV.4), while for other interactions having finite ranges (but no zero) I is never

finite. The conclusion is that the spin-orbit force cannot be taken as a zero-range two-

body interaction and one has to use instead spin-orbit force term like
% -(rl-r 2/is2

1 2 + ++

(r -r 2 X ( . ) • (01 + 2 )]. We will not try to explain to non-expert

readers what this terms meansi let us just mention that it leads to HF minimization

problems involving terms like the ones we are analyzing except that these terms are

nonlocal and so present no more singularities nor unbounded features.

By inspecting the proof of parts i), ii) of Theorem IV.4, one checks easily that part

ii) still holds for K and thus we will assume that a, 0, 6, y satisfy the conditions of

part i) of Theorem IV.4. Therefore we find that if (91,.. .,A) are in the minimizing set

-44- ,"..
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2 +I12v f~ O+ dX -C + f 3 j1 d.

+ -- 37P,J) VP +,J (V Jd '

for same constants v, C > 0. If follows easily that if W0  is small (W2 < 8vB), I is

finite and if i[91 ... A  R then f3 T + p dx < CR  for some positive constant CR .

Now, we are going to show by an example that I is no more finite (i.e. I - -1 if

we consider more realistic interactions such an the ones considered in section V. To be

more specific, we consider the functional

W

(56) Z("*'A - V1''A + J f Cp3 . ~ ~ V,)dx1s 1~ ~ A 9 I.. A] 2,, ... ] f31Vp. 1 + iVpn. n ) + iVppp ::2-

where I is given by (45). We claim that this functional is not bounded from below on the

minimizing set ( 1 HI(I3), I f3 fj9;dx~6j V.i %~,41i ( . I atsl( ), : x 1 4 1, J 4 M, N+O 4 1, j 4 A). In fact,

we believe that related examples show that even in the case when i is given by (48)

I - - W i 0  is not small enough. To prove our claim, we begin by a simple scaling

argument where A > 0 is the scaling parameter, (41...,9A) is any test function in the

minimizing set

,-3/2, ( .. X 3 /2  *2 ~ + 4

I 1A-1- T dx] +C +
A 2 3.

f -r-1- {(p[X~p(y) " 2}pdoll xdy +'..2 3 
7 'd

1 R0

+"L W" f ' (vp'jl + (VPn'in + IV~pJpldx

where Cx  is a bounded constant (depending on y 1 ,...,,). The example below shows that

the last term may be negative and thus our claim is proved sending X to 0. As in the

proof of Theorem IV.4 it is enough to build near 0 and we will actually build

910 ..... q so that T, p, pq (for q < 9), I90I2  are integrable near 0 while p(div J)

has constant sign and is not integrable at 0. Then it is easy to approximate and obtain

values which go to -. Our choice of pl,.., is the following: for i 3 take

-45-

-. ~ *9.V.hi.... ....-. 5.-. -..

..

h * * . .



to be 0 near 0, for i ( 2 take q: to be 0 near 0 and V* real near 0. Denote

by V - V, 91 - 01 + '*2 where y, *1, 02 are real. We find thatW 0Wo__,~d WO f pdvJd

.2. 3 2 13 ~dv3d

and nearby 0, div 3 reduces to 2 Im( - o Observe also that the term in
1 2

p div J given by

3(*2 +,*2 dx -

a x2 32a ax ax a
Hence, we only have to look at Y 2 (j a 1 a_ *2 - * '2 - *I) near 0. We next

axI a 2 axI a 2
choose y(x) - Ixla near 0 for some a < 0 to be determined later on, and we take

,1ix) - (x) cos e(x), *2(x) - C(x) sin e(x). So Y(x) - Ix2jaC(x)a. _ a a 8.. .. +We ) - I.l /28...
[2- r. a8

. We finally choose . . Cx2 bx2 3 9(x) _

1 2 1 2
with b > 0, b VE 1 and the exponents 0, y will be determined later on. With these

choices 7 is given by T - Syrasxx(,b)s 2rY2 where s (X2 a bx2  2)1/2

Therefore T is not integrable at 0 if 2o + 20 + y • -11 while T, p, pq (for q > 1),

IVP12  are integrable if a > -1/4, B > -1/4, a > -3/(2q), 0 > -3/(2q), S+y > -1/2. Then
1 1 1 1 "'''

if q < 9, choose a, <- near y <- near - then all the above
6r ,

conditions are satisfied.

We would like to conclude this section by inspecting the size of the spin orbit term
Wn
. f 3 VP . J dx in the case of a spherically symmetric configuration (the precise meaning

R*
of that choice will be given in section VIII). Following Vautherin and Brink [48] we see .

that

J- 4 ([xh) 3 " 1 (2j ++li[ (j +1) . L(t+1 -IR 2 (x)T-7 ~ 4 3 M

1r 2

while P(x) --- (2j +)R 2(Ixl), where I is some positive integer, to - L + 1/2
4wr a

and the sum over a means the so-called sum over occupied states (the set of levels

compatible with the numbers of nucleons - see section VIII). Hence, the spin orbit term

gives

-46-

(-U

%

.. .. . ..... - . .,.. .-. .... °.... .. o...-°•o..•. . ... ° -° .. %.

-. *,. . . . ....... . . .... . .



vp. -2j +1)ERR- R2.a 4wr $

9{ 21 6O+ )[Ij(jO+l)- 28(L5+1)- lja8 r

If we choose only one occupied state a (this oay always be achieved by taking various

with distinct supports in (O,-)) with t + , we deduce .. ,,'.*
a- 2

2f1 VP.J d.- W (2~ +1O' R; - %]3WO a3  'W2 1 . r1 .._'""

"-- (2j f+1 , R.f-L dr)
4w a a 4 r 4

. ...

%nd the above scaling argument shows that even in the context of spherically symmetric

configurations the spin-orbit term is "too unbounded*. in fact, the above computation

also shows that even for Skyrme's interaction conditions on W0  (compared to the other

constants 0,a...) have to be imposed in order to have a meaningful HP minimization

problem. ,

-47-
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"Vi.

VII. A-body problems in Nuclear Physics and Thomas-Fermi approxiations

In this section, we first make a few comments on the translation-invariant A-body

problems of the form (1) and on the minimization problem (8). Then we investigate the role

of the density-dependent term in the Hamiltonians H which are being used in practice In

Nuclear Physics. Finally, we conclude this section by discussion the validity of HF

approximation and we briefly discuss the Thomas-Fermi approximation.

we begin with problem (8) where H is given by (1). In the remarks which follow we

will not bother given precise assumptions on V which guarantee an eas justification of

the arguments below (again it is an easy exercise that we leave to the reader). We first

observe that (8) has never a minimum: indeed, let 9 c H with fa 3A II
2
dx " 1 we

consider for X > 0

(57) (xe...,x) _ (x + o--x ... +x -x+-x)

- 1 A2
where x" A xi. One checks easily that OX c and f 3 A 1#.1dx = 1. Next we

1 R
compute ( - (HOIOX)L2  and we obtain

+C9 + 1) 2 l v
2m A 2 3A -

R i

Hence, if 4 is a minimum of (8) the above equality implies Vi9 - 0 and this is not

possible since f C L
2
, i f 0.

The above equality also shows that the ground state energy E is also given by

E= In{ 1R V 12dx +
12 Y f 3 Xf i -x A " V R3A dxI

i R LI

i<j R R

And now the translation invariance does not imply anymore a priori that minima do not

exist. In fact to our knowledge no existence results of minima for A ) 3 are known for

the above problem. Observe also that the above quadratic functional is invariant under the

transformation (0 ' 9X) for A > 0.
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- - . -.... -. ~..... ....... .........



- .L-t•W~ ~ ~ ., * ~ . .- - ". C. C• " " • - - ' - - -" *- "- t --- -- F *
-  

r. -. ": . rs r. F.; r. -r r.-. ..

In fact, in practice it may be important to apply ii method to the above functional
I*%-^-

instead of MH,fl and when we inject Slater determinants into the above functional we

obtain the following quantity (which clearly replaces the term dx that we had in

the preceding sections)

(59) 0,,_.2 x + 1121If,,v'9dI 2
Ta 3 2 i~Cj R K

and everything we did in the preceding sections is easily adapted to this new situation.

We now make two remarks for improving the Physics applications of HF methods. First

of all, there is a slight difference of mass between neutrons and protons and this could be

incorporated in H and in everything we did before by replacing A x by

2t22Nih1 2i
A2 A where in, a. denote respectively the masses of neutrons

niiI 'i p i_"+1 xi
and protons.

The next remark concerns the density dependent terms: in the preceding sections (III

to VI) all HF functionals incorporated terms nonlinear with p homogeneous of a degree

different from 4 and obviously such terms cannot be obtained from through the method

presented in Section II. In fact, to improve the numerical computations obtained through

HF methods Nuclear physicists have added to the Wamiltonian H phenomenological terms of the

form

(60) t3  X VCxi-xj)V(xj-xk)
i<j<k

where V for example may be V 8 0. Now if we use Slater determinants this term gives

some term like

6 t3 f f f P(x)V~x-y)go(y)V~y-z)p(z)dxdydz33

1 3" '

or -9 t 3 f 3  3dx if V - do. Recalling that we are suppressing the spin dependence one

sees that such a term is equivalent on Slater determinants to a two-body density-dependent

interaction "-"
4 x._.) ,< xi i- -.

(61) 7 t3  6Cx -xi

(all this is formal because the absence of spin does make matters a bit trivial). Roughly

speaking the term (60) provides a simple phenomenological representation of many-body

-49-
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effects and is supposed to describe the influence of all other nucleons to the interaction

between two of them. It has also been observed that instead of p it is often better to

consider p2/ 3  (see H. Bethe (8]) which leads to the term f. p2 + 2 / 3 dx used in section

V. Of course a term like (61) makes problem (8) nonlinear and one may apply the

concentration-compactness arguments to this full nonlinear A-body problem. We will not

pursue this question here.

We now conclude this section by examining the validity of HF approximations to (8).

.- In 1311, E. R. ILeab and B. Simon proved (at least for Coulombic systems) that the ground

state energy EA given by (8) and its HF approximation given by (11) have similar

asymptotic behaviours as A go to 40. More precisely one has for general classes of V

:E
A  E A

(62) D F7 A+ -'

* where ETF is the infimum of the so-called Thomas-Fermi approximation of (8)

':TYInf{i f 05/3 dx + .1 f f o(x)V(x-y)p(y)dxdy/

33x 3

P e ,.(631 L/ 3 (,3), p o a.e., f.3p - 1)

2)2/3 .2
where y is given by (6 ) These results were first proved by E. H. Lieb and

B. Simon (31] and the original proof was later simplified by B. Baumgartner (4], .

E. H. Lieb (26], [27]: an inspection of the proof (confirmed to the second author by

- E. H. Lieb) shows that the result holds for general V. In fact, in Nuclear Physics it

EIEHF

* is expected that - A C < 0 (volume energy constant): this means that for

realistic V .T, 0. Furthermore, defining 4F by (63) where f pdx- 1 is replaced
3

A A
E AHP ETF

by J pdx = A, one would like to prove that - + C of course if
R3 A A A 0

.. ETr < 0, then one deduces from (62) that Z"/F Al l.

Concerning the T minimization problems (63), let us mention the references (36], 133]

where related problems are treated. Applying the method in (33], we find that if V is

JJ

4-50- ''''

iii :*:: .
A.. .. :. . . . . . . . . . . . . . -



given by (5) = 0 and there is no minimum while if V is given by (3) or (4) the

concentration-compactness argument applies. And it in shown in (331 that every minimizing

sequence is relatively compact up to a translation if and only if ITF ( 0. In particular

if ETF < 0, there exists a minimum and if a. 0 < 0 then this minimum is spherically

symmetric, nonincreasing with respect to 1xl. Finally, one checks easily that if m- + "

is small then MT. = 0 while if a, B are negative and large LF ( 0.

1.
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VIII. Solutions with symmetries of Hartree-Fock equations

All the minimization problems we considered in the preceding sections are invariant

under othoqonal transformations of R3, if R is an orthogonal matrix then denoting by

) R*) for all i we check immediately that

E[1...;A] - ¢ .. Al

for all the functionals we considered previously, while the orthogonality conditions (10)

still hold for (1.... A1 ,

It is thus natural to look for solutions of the HF equations with certain invariance

properties by a subgroup of the group of orthogonal transforms of R3. For instance one

may look for solutions with spherical symmetry or cylindrical symmetry and in particular

one may study the same HF minimization problems with the additional constraint of

invariance by a chosen subgroup. But of course there are various ways to impose spherical

symmetry on 191,.,., A )  (or cylindrical symmetry). One possibility is to impose that

all Vi are spherically symmetrie i.e. Vi really depend only on IxI. However this is

not really satisfactory from the Physics view point since, even when solutions with such

symmetries exist (and this is not always the case in view of numerical experiments), in

general such a solution gives a value to the functional which is too high to yield any

information on problems like (8).•-

To explain the meaning of spherically symmetric solutions in Nuclear Physics we take

an example namely the case of the functional (28) and to simplify we assume that e - 0 so
we consider

= 2 t x

A 32m 2-T° 2 x°  1 2 pRpr 1  " (p m T - ((p +  " +  )

+ 'T ( P T + P p T p + L _ I V 12 1 V P 2 + 1 0 p 12 ) + t p p ) d
4 4 nn pp 16 16 n p 3 np

Recall that we work with the following othogonality conditions

(65) f 3 i dx 5 for 1 ( i, j ( N and for N+I C i, J ( A

R 
ij
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Now if we assume there exists a critical point of 3 given by (64) with the constraints

(65) such that Pn , Pp, rn' Tp are spherically symmetric then up to some unitary transform

of the form (29) the HF equations may be written as

(66) - div (-4-- V i) + V (r), i .. et i on R3

2m r q i i

q

where el,...,e A  are the Lagrange multipliers, q = n if 1 4 i -C N, q - p if

N+ C i 4 A, r - 1xI and mn# mp, Vn, Vp are spherically symmetric functions which are .

easily computed from the expression of 9 (64). The quantities are often called

effective masses. It is well-known that 91 being an eigenfunction of the elliptic2
operator Lq given by [- div(-V--.-) + V must be a product of a function i(r) by

2m r) q
q

a spherical harmonic #i i.e. an aigenfunction of the Laplace-Beltrami operator (-AS) on

the sphere S2 of R3 . But then the orthogonality conditions (65) imply that if for some

i ( ,...,N} (for example) 9i - Ni(r)*i(e) and -A = Eii then denoting by m the

multiplicity of the eigenvalue UI  there exist (m-1) indices in {1,..,i distinct

from i for which the associated 4' is also an eigenfunction of -4S with the

eigenvalue Zi . In other words N (and Z) splits into the sun of say k multiplicities

of eigenvalues of (-AS ) and the angular functions ti associated to Vi span the

eigenspaces of these eigenvalues. In view of the increasing multiplicity of eigenvalues

of (-AS) as they increase, it is easy to see that for given N and Z they are only a

finite number of choices for the angular dependences of the functions 91 . This

decomposition is precisely the meaning of a spherically symmetric solution for HF

equations.

Of course, we could minimize Z imposing (65) and the above formulation of spherical

symmetry but it is somewhat simpler (and better for the values if E we get this way a

priori) to consider instead

I= Inf{E[ql,...,'&] / 'i C HI(R 3 ) for 1 4 1 C A, (65) holds,

(67)
f 3 prdx < , 0nPpTnoTp are spherically symmetric)
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Observe nevertheless t..at if we find a minimum of (67) then by the above arguments the

minimum is really of the form we described above so there is no lose by considering the

minimizing set described in (67).

And one proves easily the following result using either the concentration-compactness

arguments with symetry (Q 1) or the simpler fact that if ps is bounded in LI(C3) l HI(K3) %

and is spherically symmetric then pm is compact in LP(IR 3 ) for I < p < 6 (see P

W. Strauss [461, H. Berestycki and P. L. Lions (5], P. L. Lions E37]1. Before stating the

result we just need a notation

I S 1 ..... r) = Inf{3[91,.....*A] / C H (la, f 3 PRdx < -

(68) -m3 5, lij for I < i, j N+1i < , J C h

, 0p, n i T are spherically symmetric)

n'p n# p

where a, ) 0 for all i e (1,....A}.

Theorem VIII.l: Assume that a > (0+8)/2, a + 8Ay > 8+0. Then, every ninimizing sequence

of (67) is relatively compact in H1(R3) (and pT is relatively compact in L1C3 )) if -.

and only if the following condition holds

A
(69) I s < , (m .... ,mi), for all m, e [0,1](li(A) such that m mi < A

"+' ~i-1I...

In particular there exists a minimum of (67) if (69) holds.

Remarks: 1) As in many results above, the condition (69) seems difficult to check for

A 4 2 and in fact numerical computations that the existence of a minimum is highly

dependent on A.

2) Again it is possible to treat the case when h - 0. ,

For realistic interactions and HF problems (thus including spin-orbit forces) the

spherical symmetry is imposed by consi4ering (n,...,9) such that Pn, 0p, TnF ,p are

spherically symmetric; 0n(xy), Pp(x,y) satisfy Pq(fX,Ry) - p(x,y) for all rotations

R of 23 and for all q - n,P and Jn' 31 have the form
x IJq!(rl,)

J(x)
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and with these constraints similar results hold., '.x-te n pi h

As we already explained above two arguments say be invoked to prove the analogues of

,3 Teorem VIXX.1 in the ae of more ealitic interaotioas Vlx-y}. Zither one appies the

general arguments of P. L. Lions [341 (concentration-omlpaatnes principle in presence of

symetries), or one may use more standard compactness arguments due to spherical symetry

am mentioned above. Zn the latter case however one needs to explain how to pass to the

limit on the term .. ,,

I f V(x-y)Ip (x, Y)12&gft

where P is the density corresponding to a minimAsing sequence , , (this

bounded in HI(43)). We thus assume we have spherically symmetric configurations i.e.

S(R~XRy) " P (Xy) V x,y C 3"

f or all notations R of S3 . since V decays at infinity it is enough to explain why#

fer all R < -, JP,(x,y)j2 11x-.y is compact on L-(i3t3 3). We then introduce

(x) "- f 10 (xy)I 2

which is spherically symmetric (Cm(Rx) C(x)). And Cm is bounded in WV1 (33 ) by the

definition of 0 and H bounds on Vi. By P. L. Lions (371, we see that (x) '9 C

on R3 . Therefore, if we prove that Cis bunded in LlU3 ), it is then easy to

conclude that CI is compact in L1 (U3 ). But .

f 2iCf( f ,C 2 ,me,, 2 ~
RU i 

y-y )2

i I x-I

-C CAt ( f 1 V() x)12 1 3( jIdy) dyd

Ri U U xIyIR

U or various constants C ) 0 and we conclude. ? '-

i~~~i R3°°-yo
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We now conclude this section by a brief discussion of cylindrical sy m strio

moluion. Le usdenoe b £ 1 (x4 2. z - 213 if x -(xI 1 x21 x3 ) is & generic Point

Of x.Argument, similar to those given above lead to the following problem

c I~(K ),fRI I N pTdx < - (65) holds,

(70)R

Pnop ,r 'Tn T are functions of a, a only)

that we extend in the following class of problem

(a ...,u*'A) Inf(XC91 ...s9 Pt1/9 1 HR3q d3 mili

(71) for 1 4 1, K , NO1 4 1, 4 A; f 3 pldK < Pn p P T n'T

are functions of s, z only)

*Where ski'... ,MA are nonnegative constants.

%gain, applying the concentration-compactness arguments we see that if a I (0+6)/2,

a + GUy > 6+0, then every minimizing sequence of (70) is relatively compact up to a0%

translation in z if and only if the following condition holds

c <Ic (M -%e..1~A) for all a, c .,1

(72)A

(1(Ci-A) such that Imi 6 (0,A)

* and there exists a minimum of (70) if (72) holds.
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IX. The shape of the nucleus and symmetry breaking .

Admitting that the HI approximation is valid, then the ground state of a nucleus is

supposed to be described by the minima of the various HF minimization problems studied in . _

Sections III - VI. In particular the shape of the nucleus will be determined by the

density Ot the nucleus is spherical if P is spherically symmetric, or more generally .- %-

has the symmetries that 0 possesses.

If we keep the notations of the preceding section, we see that the spherical symmetry .-. *.

is broken if Is > I but it may happen that i > Ic - I in which case the spherical

symmetry is broken but the minimum (if it exists) still preserves the cylindrical

symmetry. While if 10 > Ic > I then even the cylindrical symmetry is broken. All these

phenomena (and many others related to more elaborate symmetries) are known to occur in

Nuclear Physics and are very important. The mechanism behind these symmetry breakings is

not all all understood neither from the Physics viewpoint nor from the mathematical

viewpoint. We propose here some vague explanations on some of these symmetry breakings and

we consider as examples various simpler model problems which could help understanding these

phenomena. Before going into these examples, we would like to comment on the physical

meaning and implications of such deformed mF ground states. Since the original Hamiltonian

is rotationally invariant we know that the real ground state should have a "good total

angular momentum". This aspect which, at first sight, seems to be a defect of HF theory -

hides, on the contrary, very nice features as briefly explained in the following. In order

to restore the symmetry the HF solution is reinterpreted as an intrinsic state capable of

rotating onto intself. The quantitation of such collective rotational motion, achieved by

A. Bohr II] a long time ago, leads to a model predicting excited states whose spectrum

should obey the simple laws -R, 1(1+1) where I is the total angular momentum and -. ..

g is the inertia momentum. Such typical rotational spectra are exhibited by serval nuclei

(52D54m, 154Gd, 168Er) and the HF theory do predict in their cases a deformed intrinsic

structure. It must be pointed out here that such interpretation of broken symmetries in

terms of collective modes is currently used in various branches of modern physics (see J.

Goldstone modes [221, Higgs modes in non Abelian Gauge theory 124]). Thus, it appears that
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the H method is a such more powerful tool than it looks a priori from a strict

mathematical viewpoint.

we begin with a very simple example

Example I let B be a bal centered at 0 in R3 . we consider the minimization problem

A A 2-
Inf{ flvui 2 ,x - A I f( uj)dx / ui e H()

(73) i-I

for all1 4 i 4 A, fB uiu5dx - 6i, for 1 4 L, j A}

where A > 0 is a parameter, ui(1(i<A) are real-valued functions, f is a continuous

* function on 3+satisfying for example

(74) im f(t)t
"5/ 3 

4 0 •

t+4 
A

We claim that if A - 2 or ifA.- 3 then for A small the density P - u2  is noti

spherically symmetric where (uI , ... ,uA) is any minimum of the above minimization

problem. (The existence of minima is a standard exercise on functional analysis since we

are dealing with a bounded domain 8 and the nonlinearity satisfies some appropriate

growth condition). To prove this claim, we denote by 3(A) the value of the above infimum

and we observe that for A - 0, Z(0) is nothing but the sum of the first A eigenvalues

of the operator -ti in HI(B) and that the corresponding minima for A - 2 or 3 are

such that P is not spherically symmetric. To conclude we just have to prove that Z(A)

4. converges to E(0) and that minima (ux,...Pu ) of 3(A) converge (extracting enough

.1 subsequences) to the minima of 3(0). Indeed, observe that

E(A) 4 E(0) + CA, for som C P 0

while (74) implies easily that for some C ) 0 %

Y 13lvuil dx + A .i f (PA)dx 4 C .
i,,I

A f. f+4(PA )d *+ 0

This yields on one hand that E(A) A+0 S(0) and on the other hand if u (l(iCA) converge
X+O i

weakly in H (3) to ul then
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A A

9 fIVULI dx 4 Urn I f9Ivu~Ilax

A A, 2A
, li,, f I fBIVUig ax X, fS f e(P ')dX}

i+0 i-1

4 Aim 3(A) E - (0)
A+0

and mince the constraints pass to the limit, our claim is proved.

One sees what is the mechanism involved in the above exm le and it seems that this

mechanism plays a role in Nuclear Physics: roughly speaking it is expected that sylmetry

breaking. "have more chances to occur" for those A much that the combinatorics of filling

our Slater determinants with spherical harmonies (as we explained in the preceding section)

do not make possible the use of only the lowest possible eigenvalues (or energy levels)

of (-A This explanation is very much related to what is called in Physics magical

numbers. of course, this tentative explanation has to be confimd or LnfLrmed by the

examination of mo realistic problems than (73). we propose another model problem for

which it would already be interesting to decide whether there is symmetry breaking or

not. We will only mention the case A = 2.

* lample 2: We consider now

In 17.1 2 + IVv,2dx ff ()x

I11,1 nff 2 - f F u1xlVlxY)v2(y)dxdy /

(75)

U, v C N1C3 3)f u d - R3 v dx - 1)

where X > 0 and V is spherically symaetrLc and satisfies V - V 1 + V 2  where

PL3Li(23)(L - 1,2) for some P , c ,_ ). The main difference between (75) and HP

problems is the fact that we do not assume anymore that uv d K 0 and it is possible

that this type of constraints plays an important role in syetry breakings. We prove

below that as soon as 1(1,1) < 0 all minimizing sequences are relatively compact in -

M1(23) up to a translation and thus there exists a minimum of (75). By symmetrization %
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techniques minima are spherically symetric if V is nonnegative, noninereasing with 11
respect to lxi. The case when V does not have these properties is totally open.

To prove the above claim, we have to show (using the concentration-compactness method)

that if V(1,1) < 0 then

I(1,1) < I(App) + I(1-A,1-,) for 0 4 A 4 1, 0 C V 4 1 and 0 < A+p < 2

where I(i) stands for the same inflmum as in (75) but with the constraints

1n u dx " A, f 3 v 2 dx h. e proof of thes strict inequalities uses the fact that if

= 0 or if u = 0 then I(X,u) - 0 while if 0 < X < 1, 0 < iJ I I then I(A,Ut) - AM

z 1 where

,,s,t) - Inf(s J 3fVu 2dx +t f 31Vu12dx f f u2(x)V(x-y)v2(y)dxdy /

UvC (2) u2 dx f v dx 1)

and thus -(s,t) is nondecreasing with respect to s or to t. Observing next that AU + .

(1-X)(1-) < 1 if 0 < X < 1, 0 < v < 1 we deduce the above strict subadditivity
3( ,1,-,t , ), 3 1, ) U -, :

inequality by remarking that

We conclude this section by mentioning that the study of various nucleii sems to

indicate that the mechanism we illustrated by the simple example I apparently does not

cover all the possible ways the spherical symnetry is broken. To explain this claim, let

us first explain how spin dependence (and spin-orbit forces) makes the above description a

bit more complicated. Indeed, in such a case, the sequence of HF levels is typically of

the following form (is 1/2 multiplicity 2, 1p 3/2 multiplicity 4, 1p 1/2 multiplicity 2,

Id 5/2 multiplicity 6, 2s1/2 multiplicity 2...) where the states (levels) are labelled as

it is usual by the set n, £, j where j denotes the oigenvalue of the total angular

momentum e = + g. Thus the degeneracy (multiplicity) of the level (ntj) is 2J+1.

12 28
With this scheme one checks that both nuclei C and S have nucleon numbers

6 14
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compatible with a spherical WV solution built on the lowest levels or eigenvalues. Yet, %

the UP computations lead to solutions which are not spherical but deformed. In fact they

correspond to axially deformed shapes i.e. solutions with cylindrical symetry

12) which are prolate (i.e. > 1, oblate corresponding to < 1) - see M.

a 2 c2aa
Girod and a. GramatLcos [2111 X. Kumar, Ch. Lagrange, M. Girod and S. Grammaticos (25].

A.'

•
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X. External field method.

To present the external field method it is worth saying a few words on the numerical

computation of HF minimization problems. Because of the quite complicated form of the

functionals one has to minimize, some numerical methods which are currently used (typically

Galerkin type methods based on spherical harmonics, or two basis of spherical harmonics

centered at different points...) make difficult to avoid symmetries and seem to favor the

possible local minima with spherical or cylindrical symmetry. And in all cases the

numerical methods break the translation invariance. These remarks explain why the standard

problem in the minimization of nonconvex functions of avoiding local minima in order to

find the absolute minimum seems even more acute in HF problems. One idea to avoid this

difficulty is to deform the shape of the density by an external field acting an the system

as an additional constraint. As we will explain below this approach is not only useful for

numerical purposes but is also relevant for physics.

To explain the principle of the external field method, we consider a CI functional

on a manifold M, bounded from below and we are interested in the minimization problem

(76) E = Inf{E(u)lu I Mu • ..

Now if Q is some given C1 functional, and q C R we consider the same minimization

problem where we add the constraint Q(u) = q (which in HF problems represents the action

of the external field)

(77) E(q) = Inf{E(u) / u c M, Q(u) - q) . .

It is obvious that E - Inf E(q) and that if this infimum is achieved at q0 and if
qCR

3(q0 ) is achieved at some u0 then u0 is a minimum of (76). But observe also that if

we assume that at some q0 E is differentiable, E'(q 0 ) = 0 and that for q near q0

E(q) is achieved at some uq differentiable with respect to q at q0 , then u ie a

critical point of E. Indeed, uq0 being a minimum of E(q0 ), there exists a Lagrange

multiplier 8 such that

(78) E'(uq - 8Q' uq0 )

du
while if we denote by v 0 =q q - then differentiating the relations Q(u'q) =q, a
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E ( u q ) = 3 ( q ) w e o b t a i n I Q , N

I=mQ(Uqo) * v 0  O- "E(Uqo) v 0

Therefore applying v. to the equality (78), we obtain 6 - 0 and we conclude.

Finally, lot us observe that if 3(q) admits a minimm at q0, then roughly

speaking tq0  is a local minimum of E. Hence, this method appears to be a way to explore

the local minima of E. Of course, one may use several constraints instead of one i.e.

Qi(u) - qi for 1 4 1 i k

in HF problem in Nucleer Physics, these forced constraints Q are mostly taken to be

linear in p i.e.

(79) Q191 .... F91 = R3 Q(x)P(x)dx W

for same function (field) Q on R3. In addition, they are chosen in such a way that the

added constraint measures the deformation of the nucleus (we give an example below).

Hence, if one computes

(80) W[ql.....qk] inf{EP[ 1 .. A / 99 (V

for 1 4 1 4 k-

for some HF functional Z and where QI,...,Qk are k external fields, then it is

possible to describe the energy of nucleii (even heavy ones) as a function of its shape.

And this seems to be relevant to the study of fission isomers and fission barriers (see

J. F. Berger, M. Girod and D. Gogny [6], M. Girod and B. Grammaticos (21]).

We now conclude this section by a simple example of an external field. In (79) one

can take for Q(x)

(8)Q(x) (x 2+ x2 2 2 )C(r)2 3

where r - (x.2 + . + x3 '2 and C(r) is some kind of cut-off function such that Q is

bounded on iR3 . Of course, it is possible to analyze problems like (80) by the

concentration-compactness method and to write down necessary and sufficient conditions -

involving strict sub-additivity conditions. But the verification of these conditions seems

to be even more out of reach than for the HF problems we considered in the preceding

sections.
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XI Time-dependent Hartree-Fock equations.

Th, time-dependent Hartres-Fock equations (TDNF in short) are coupled nonlinear

Schr8dinger equations.* Given any RF functional Z[91-'***' I as in the preceding

sections, T0SF equations may be written as follows

(92) Nj . LZ I''R~A-0o 3 x (0,-), 1 4 k 4 A

Of course, to solve (92) one has to add initial conditions

(S3 9kxW on R3 1( k C A

0

For example if Z is given by (21), then (82) may be rewritten as

a- I2 divtp + Wo k on R3 x (0,-), 1 4 k 4 A
mt I k 2 + W*

B y 2
*where W --uP +- - AP +8P.

For the motivations in Nuclear Physics for studying TDIIF, we refer the reader to

* H. Flocard (16].

We will not give results concerning the resolution of the Cauchy problem (82), (83):

* let us just mention the works by J. Qinibre and G. Velo (18], (19], 12011 for all

interactions except Skyrme's there is no special difficulty to solve (821 - (83). plany

* mathematical results on systems like (92) are based on the various conservation laws

* satisfied by solutions of (92): for example multiplying (92) respectively by Vk and

taking the imaginary pert and by at and taking the real part one finds integrating

over 2

*(94) fR3I9kI 2dx is independent of t ,1 4 k 4 A

(95) 3 ~1**~ 1  is independent of t

Similarly, one obtains that R 3 01dx is independent of t for I k, I A.

We next observe that solutions of HF equations (up to unitary transform) lead to

stationary solutions of TORF equations where stationary means that p, r are independent

* of t: more precisely we have seen in the preceding sections that we nay write the HF
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equations as ", %-"

3 1  A =C k k on R3 , for 1 4 k 4 A

k
ickt 1"

Then obviously Ok(x,t) - e 9k(X) (1kA) defines a solution of (82). ,

In particular, any minimum of the HF minimization problems leads to a stationary

solution of TDHF equations. It is shown in T. Cazenave and P. L. Lions [12] that, if the

subadditivity conditions given in the preceding sections via the concentration-compactness

arguments hold, minima of HF minimization problems are orbitally stable in TDHF V-

equations. Let us also point out that similar arguments show that minima of the HF

minimization problems with additional symmetry constraints (see section VIII) are orbitaliy go

stable with respect to perturbations with the same symmetries.

But since all solutions of HF equations lead to stationary solutions of TDHF

equations, the study of all possible solutions of HF equations presents some interest. in

particular one may look for critical points of H(@,...,q,) with the additional

orthogonality constraints. The only approach we know one might try is through min-max

principles as it is done in H. Berestycki and P. L. Lions [51, P. L. Lions [38], [39] for

related problems. This approach requires spherical symmetry of the functions ('I,...,qA).

We only have very partial existence results in that direction. -4.

In fact Nuclear Physics considerations (collisions of heavy ions) indicate that it .4.

would be interesting to find all periodic solutions of TDHF: again one has to define the

precise meaning of periodic solutions. For example, if no differences are made between

neutrons and protons, a solution of (82) is said to be periodic of period 7 if there

exists a unitary transform U such that

(TI(T),...,,A(T)) = U('I(0),...,'A(O)) on R3

Observe that this implies that the densities p, r are indeed periodic of period T (in

the usual sense). In fact, an even more general (possibly) notion of periodic solutions

consists in requiring the density P(x,y) to be periodic. It seems, at least numericaiy,

that there are many periodic solutions of TDHF equations and this is another major open -. '

question.
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A final remark on this topic concerns the possibility of having stationary solutions

of TDHF equations which are not obtained through solutions of HF equations. We illustrate

this possibility on a simple example of a system of two nonlinear equations.

Example: We consioer the following system of two coupled nonlinear Schrl6dinger equations

ilt - A9 = 0Y
" 1 P on R

3 x (0,-)t
(86)

i* t - AO= 7- 4* on R3 x (0,_)

where 0 = (1,12 + 1*12) and 1 < Y < 5/3. 2.i'.

Let w, m > Oi we look for solutions of (86) of the form( 9(x,t) - eiwt(cos mt u(x) + sin mt v(x))

*(x,t) = eiwt(-sin mt u(x) + cos mt v(x)) -

And we find the following nonlinear system for u, v

'V-I 3
-Au + imv + Wu - P-u in R

( 87 )
(87) -AV - imu + Wv - Py-1 v in R3

Observe that if we show there exist solutions (u,v) of (87) then the above V(xt), r

4(x,t) yield stationary solutions of (86) (p is independent of t). However, if P, 4'

were solutions of (86) built through the stationary analogue of HF equations, this would

*" imply that v - -iu. Thus, we want to exhibit solutions of (87) with v V - iu. To this

end we consider the following minimization problem

I = ,4in{f 31Vu,
2 + IVv,2 + wul2 + wlv 2 + Re(im vu)d/

R
* (88)

U, V C HI(K ), R pd2 = 1} 1)
R3

This problem is solved as in [33] by the concentration-compactness arguments and thus

there exists a minimum (uv) of (88). Now, if we have v E -iu, this would imply
I ) Min{fR 3 2IVu?

2 + 2wfu, 2 + mlu! 2 dx/ucHl(R 3 ), f 31u! dx = 2l1

and this last minimum is strictly larger than
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* .2 lMin{f 3IVUI1
2 + Wiul 2dX/uCI(3 3), f IUI2 y~dx 2-} )

R3 R

I ~nf3 Vu12 + WIil12d/N (3L3), f 3 1 dx -1
{fR 3 K 1rP

On the other hand, we have taking v - 0 in (88)

(Min{f 3 u1 +wlldx/uCfl'(I
3 ), f~j I1 3 juI 2 ydx -1

R3 3

and the contradiction proves our claim on the existence of a solution of (87) with v I -iii.
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X1I. Hartree-Fock-sobolyubov approximations

In this section, we want to present a different approach to the study of nucleii

namely the so-called Rartree-Fock-Bogolyubov approximation N. N. Bobolyubov [101,

C. Bloch and A. Messiah [9], 3. B. Bardeen, L. N. Cooper and J. R. Schrieffer [31). We

will not attempt here to explain the Hartree-Fock-Bogolyubov method and we refer to the

interested reader to 3. Decharge and D. Gogny [141, 3. G. Valatin [47]. we will only

describe the typical minimization problem arising in this theory which may be thought of as

an improved approximation of the A-body problem considered in section 1I. To simplify, we

will again ignore the spin dependence and spin-orbit forces. The minimizing set is given

by

14 ((i,v) c L 2(,M3) X HI (,t3), f uv + u vidx 0

f3 U U + v v dx 5 for all i,j > 1, fi
l2 dx  

A)
R 3i ij ii ;01 s

We now introduce the Rartree-Fock-Bobolyubov problem (HFB in short)

h 2 
2  1 .'

Inf{! i IVv 2dx + -. f f P(x)V(x-y)p(y)dxdy +R3 ,0 3 3...

.± f f V(x-y)lp(x,y)l 2 dx +.I f f v(x-y)l,.(x,y)l 2 dxdy2 ,.2..
R3 3 R3 3

/ uiV i )i~I E 14)

where 0(x) - :. I(x)1 2, 0(xy)- I vi (x)v (y), .(x,y)- u ui(x)v (y) for x, y c E .

i;1 i)1 i)1

And one may choose for example (as in [143) the potential

V(x)- x Waxp,-t{ 2/-.)

i-1,2
where Wi, Ii are constants.

Most of the results, remarks and open problems given in the preceding sections may be

adapted to the study of problem (89). Before explaining how we may apply the

concentration-compactness program on this problem, let us first mention the important
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connection between the above problem and more standard HF problems. Deriving the Euler-

Lagrange equations of the above minimization problem (which by the way are called Hartree-

Fock-Bogolyubov equations) one sees immediately that if (v1 ,... ,vA) is a solution of the

HF equations then choosing vi 2 vi for 1 4 i C A, vi 2 0 for i > A, ui E 0 for %

1 A, u i arbitrary satisfying

f a 3 u iu;dx " ij

for I + A 4 i,j, we find a particular ("trivial") solution (uL,vi) (i of the HFB .

equations. In some vague sense, the EFB problem contains the HF problem.

We now conclude with a brief explanation on the way we may apply the concentration-

compactness arguments to the above problem. We apply the usual concentration-compactness

lemma to the density P. And we see that minimizing sequences (uivi)}I)I of the above

minimization problem are compact up a translation in L
2
(R

3
) x H

1
(R3) if and only if

I < 1(141.N2.,) + I(l41.I4.-#)

for all hermitian matrices NI, "2' Mj' y, N satisfying M, M2' Mi, M 0,

Tr(M 1) [0,A], Tr(Mj) - A - Tr(M 1), M + M+ M + i and I(NE,C)I '(M 12

(1 2 CC)/2, V C C j
2
, where in addition 0' 1 M + M 221 1. In the above inequality

I - nf(r(M1 ,M2,0) / MjrM2 ) 0, MI - M , M 2 = M2 1 N1 + M2 - , Tr(mt) = A) and finally,

denoting by P(i,j) the i-j component of the matrix P (14i,j), the definition of

I(MI,12,N) is given by
21 

"I
"-

1([4142,4) " Inf{f 32W T lVviI
2
dx +T. f

f ,(x)V(x-y)P(y)dxdy +

. ' 2- 1N L-2 1 3"-3

- . j jV(x-y)0(x'y)I2dxdy +7 j V(x-y)lk(xy) dxdy / (ui'vi) C L X HR3 3 •3
f vij - l(i,J), f R3 uiu dX - M 2 (i,j), R3 uiv; + ujvidx N(i,J) '

In fact, as in the case of HF problems, using the various invariances of the above problems

it is possible to restrict the above strict subadditivity inequalities to a particular

class but we will not pursue this matter here. a..
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